
H❤rtDown: Document Processor for
Executable Linear Algebra Papers

University of Toronto

Shoaib Kamil Alec Jacobson Yotam GingoldYong Li

Thank you. This talk should be given by my PhD student Yong Li. He couldn’t be here today for visa reasons.

%%%

Welcome to the talk, my name is Yong Li, I’m a PhD student in George Mason University.

We create a document processor called H❤ rtDown for executable linear algebra papers.

This is a joint work with

Dr. Shoaib Kamil from Adobe Research,

Prof. Alec Jacobson from University of Toronto and Adobe Research,

And my advisor Prof. Yotam Gingold from George Mason University.

H❤rtDown

H❤ rtDown is an environment for reading and writing scientific documents. Instead of writing formulas in latex, you write them in I❤ LA.

H❤ rtDown is an environment for reading and writing scientific documents. Instead of writing formulas in latex, you write them in I❤ LA.

By compiling the math, H❤ rtDown augments the paper with clickable definitions

By compiling the math, H❤ rtDown augments the paper with clickable definitions

and warns you when you’ve forgotten to describe a variable

The compiled math can be used to generate figures.

Updating the formula will change both the typeset math and the figure.

Related Work

• Literate Programming [Knuth 1984]
• Markdown [Gruber and Swartz 2004]
• Notebooks [Arnon 1988; Kery et al.

2018; Rule et al. 2018; Wolfram
1988]
• Pluto [Plas 2020]
• Observable [Bostock 2017]

Augmenting Scientific Papers with Just-in-Time,
Position-Sensitive Definitions of Terms and Symbols

Andrew Head
andrewhead@berkeley.edu

Kyle Lo
kylel@allenai.org

Dongyeop Kang
dongyeopk@berkeley.edu

Raymond Fok
rayfok@cs.washington.edu

UC Berkeley Allen Institute for AI UC Berkeley University of Washington

Sam Skjonsberg Daniel S. Weld Marti A. Hearst
sams@allenai.org danw@allenai.org hearst@berkeley.edu

Allen Institute for AI Allen Institute for AI UC Berkeley
University of Washington

ABSTRACT
Despite the central importance of research papers to scienti�c
progress, they can be di�cult to read. Comprehension is often
stymied when the information needed to understand a passage
resides somewhere else—in another section, or in another paper. In
this work, we envision how interfaces can bring de�nitions of tech-
nical terms and symbols to readers when and where they need them
most. We introduce ScholarPhi, an augmented reading interface
with four novel features: (1) tooltips that surface position-sensitive
de�nitions from elsewhere in a paper, (2) a �lter over the paper
that “declutters” it to reveal how the term or symbol is used across
the paper, (3) automatic equation diagrams that expose multiple
de�nitions in parallel, and (4) an automatically generated glossary
of important terms and symbols. A usability study showed that
the tool helps researchers of all experience levels read papers. Fur-
thermore, researchers were eager to have ScholarPhi’s de�nitions
available to support their everyday reading.

CCS CONCEPTS
• Human-centered computing ! Interactive systems and tools.

KEYWORDS
interactive documents, reading interfaces,scienti�c papers, de�ni-
tions, nonce words

ACM Reference Format:
Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg,
Daniel S. Weld, and Marti A. Hearst. 2021. Augmenting Scienti�c Papers
with Just-in-Time, Position-Sensitive De�nitions of Terms and Symbols. In
CHI Conference on Human Factors in Computing Systems (CHI ’21), May 8–13,
2021, Yokohama, Japan. ACM, New York, NY, USA, 18 pages. https://doi.org/
10.1145/3411764.3445648

1 INTRODUCTION
Researchers are charged with keeping on top of immense, rapidly-
changing literatures. Naturally, then, reading constitutes a major
part of a researcher’s everyday work. Senior researchers, such as

CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in CHI Conference
on Human Factors in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan,
https://doi.org/10.1145/3411764.3445648.

definition

nonce word
(the symbol "k")

hyperlink to definition
in�context

usage
count

buttons to open definition,
formula, and usage lists

Figure 1: ScholarPhi helps readers understand nonce words—
unique technical terms and symbols—de�ned within scien-
ti�c papers. When a reader comes across a nonce word that they
do not understand, ScholarPhi lets them click the word to view a
position-sensitive de�nition in a compact tooltip. The tooltip lets
the reader jump to the de�nition in context. It also lets them open
lists of prose de�nitions, de�ning formulae, and usages of the word.
ScholarPhi augments the reading experience with this and a host
of other features (see Section 4) to assist readers.

faculty members, spend over one hundred hours a year reading the
literature, consuming over one hundred papers annually [97]. And
despite the formidable background knowledge that a researcher
gains over the course of their career, they will still often �nd that
papers are prohibitively di�cult to read.

As they read, a researcher is constantly trying to �t the infor-
mation they �nd into schemas of their prior knowledge, but the
success of this assimilation is by no means guaranteed [7]. A re-
searcher may struggle to understand a paper due to gaps in their
own knowledge, or due to the intrinsic di�culty of reading a spe-
ci�c paper [7]. Reading is made all the more challenging by the
fact that scholars increasingly read selectively, looking for speci�c
information by skimming and scanning [34, 70, 98].

We are motivated by the question: Can a novel interface improve
the reading experience by reducing distractions that interrupt the
reading �ow? This work takes a measured step to address the gen-
eral design question by focusing on the speci�c case of helping
readers understand cryptic technical terms and symbols de�ned

• Idyll [Conlen and Heer 2018]
• Tangle [Victor 2011]
• Distill [Team 2021]
• Authorea [Goodman et al. 2017]
• Nota [Crichton 2021]
• [Bonneel et al. 2020]
• ScholarPhi [Head et al. 2021]

Literate programming environments Reactive documents and publishing

• Fortress [Allen et al. 2005]
• Lean [de Moura et al. 2015]
• Julia [Bezanson et al. 2017]
• [Alcock and Wilkinson 2011]
• [Dragunov and Herlocker 2003]
• [Head et al. 2021, 2022]
• Penrose [Ye et al. 2020]
• I❤LA [Li et al. 2021]

Compilable math and augmentations

There is related work on …

* Literate programming environments, which duplicate math and code. H❤ rtDown avoids this duplication.

* H❤ rtDown is related to reactive documents and publishing. H❤ rtDown focuses on helping scientific document users correctly author, read, and experiment with
mathematical formulas.

* We make use of languages for compiling math and ideas for augmenting math.

Design Goals

• Support authoring, reading, and making use of (experimenting with)

• Ecological compatibility

• Correct and reproducible documents
• Minimal authoring overhead

• Don’t change what authors put in papers (prose, math, figures,
tables)
• Minimal changes to how they write
• Plain text documents

We have two design goals.

The first is to support authoring, reading, and making use of (experimenting with)

Correct and reproducible documents

With Minimal authoring overhead

The second is to provide ecological compatibility which means

We don’t want to change/restrict what authors put in papers (prose, math, figures, tables)

And we want minimal changes to how they write, e.g.: We prefer plain text documents

156 SIGGRAPH 2020 papers

To inform our design, we analyzed 156 papers from the SIGGRAPH North America 2020 Technical Papers program.

% collecting both quantitative and qualitative observations.

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

II. Math appears out of order. Symbols used before defined.

Our formative study found that

All papers appear to be written using LaTeX.

Other Observations include

(I) Prose organizes the document. Mathematical expressions appear between paragraphs of prose or inline.

(II) Math symbols are often used before they are defined, as determined by the prose.

Equations in papers often depend on each other.

Math appears out of order [Wronski et al. 2019]

Let’s see a typical example from this paper. (# this paper is not from SIGGRAPH 2020, but it better demonstrates the dependence)

If we zoom in the six and seventh pages.

Math appears out of order [Wronski et al. 2019]

We can see that (*) equation one defines a function C that uses w which is (*) defined in the second equation, meanwhile, omega in the second equation is defined in (*)
the fourth equation.

For each equation, there’s a prose block (*) after the equation describing all the symbols in that equation

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

II. Math appears out of order. Symbols used before defined.
III. Symbols re-used in different contexts.

[Chapiro et al. 2019]

We also found that

(I) Symbols may be re-used, but the different context is clear to the reader.

For example, the M symbols have different meanings in these equations.

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

II. Math appears out of order. Symbols used before defined.
III. Symbols re-used in different contexts.
IV. Symbol appears in executable formulas and non-executable derivations.

[De Goes and James 2017]

(I) A symbol may appear in both derivations and executable formulas.

For example, the equation 12 is the derivation for the function u while equation 14 is executable.

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

II. Math appears out of order. Symbols used before defined.
III. Symbols re-used in different contexts.
IV. Symbol appears in executable formulas and non-executable derivations.
V. Symbols and functions appear with conditional assignment.
VI. Functions have a variety of implied semantics for parameters and

pre-computed symbols.

(I) Symbols and functions may be defined via conditional assignment, a simple form of control flow

(II) Functions make use of a variety of implied semantics for parameters

We quantitatively analyzed the 916 function definitions across the 156 SIGGRAPH papers.

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

We take an empiric approach to categorize these Equations.

Here is the overview of them.

96% use parentheses for parameters,

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Liu et al. 2020]

91% rely on implicit parameters,

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

Function subscript  
as parameter

Unused parameters

Defined via  
conditional assignment

Square brackets  
for parameters

Function superscript  
as parameter

Parameter superscripts  
as additional parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Lan et al. 2020]

[Liu et al. 2020]

[Ma et al. 2020]

[Kim et al. 2020]

[Chiu et al. 2020]

[Lessig 2020]

[Jiang et al. 2020]

We observed a variety of other less common semantics related to function parameters.

% 2% interpret the parameter superscripts as additional parameters,

Based on these findings, we extend the grammar and implementation of I❤ LA to include support for local functions

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

• Pseudocode sometimes present, compilable code isn’t. No literate programs.

II. Math appears out of order. Symbols used before defined.
III. Symbols re-used in different contexts.
IV. Symbol appears in executable formulas and non-executable derivations.
V. Symbols and functions appear with conditional assignment.
VI. Functions have a variety of implied semantics for parameters and

pre-computed symbols.

In addition, Pseudocode sometimes present while compilable code isn’t. There’s No literate programs.

H❤rtDown Design: Authoring

• Context definition

We design H❤ rtDown based on our formative study.

Just as in LaTeX or many other Markdown formats, the prose is written as plain text with occasional markup commands

(*) Authors must declare a context for their symbols.

The context disambiguates symbol reuse (and corresponds to our concept of modules).

###

This allows better symbol and formula re-use

Later context declarations override earlier declarations.

H❤rtDown Design: Authoring

• Prose descriptions

One appearance of a symbol in the prose deserves special attention: the text describing the symbol.

Detecting the span of this description cannot be accurately automated, so we require authors to annotate such spans.

H❤rtDown Design: Authoring

• Executable mathematical expressions

Authors can write executable mathematical expressions in different I❤ LA blocks and inline I❤ LA formula. We chose I❤ LA since it resembles equations in papers and
can generate latex and code for different backends.

% I❤ LA requires type declarations for all symbols not appearing on the left-hand side of an equals sign

H❤rtDown Design: Authoring

• I❤LA extensions

• Local function support

• Symbol def-use analysis

• Modules

• MathJax output includes metadata

We extended I❤ LA with new language features.

We add local function support based on the formative study.

In order to handle Math appearing out of order, we add symbol def-use analysis

We add Modules to support different contexts

We also modify MathJax output to include metadata for our viewing environment

H❤rtDown Design: Authoring

• Figures

H❤ rtDown executes Python code blocks, which allows authors to generate figures programmatically

The Python code can access the compiled functionality of the document as a module.

% Authors can also edit I❤ LA formulas and Python code for figures directly in the viewer-side of the authoring environment.

H❤rtDown Design: Author support

H❤ rtDown helps authors write correct math and complete prose.

Error messages appear whenever the user’s formulas contain incompatible indices, dimensions, types or erroneous syntax.

(*) The editor displays the I❤ LA compiler’s error message and highlights the appropriate line in the source.

H❤rtDown Design: Author support

When symbols are not described anywhere in the prose, they(*) appear with red underlines in the viewer.

H❤rtDown Design: Reading Environment

H❤ rtDown’s paper reading environment provides several useful interactions that use the metadata.

Other enhanced reading environments could be created using the metadata H❤ rtDown generates. In fact, our augmentations were inspired by the ScholarPhi reading
environment [Head et al. 2021].

H❤rtDown Design: Reading Environment

• Glossary

(*)H❤ rtDown displays a context-dependent glossary in a fixed position as the page scrolls. The glossary updates automatically with the relevant symbol list.

H❤rtDown Design: Reading Environment

• Symbol definitions

When clicking on a symbol, H❤ rtDown shows its description and an arrow to the prose that described it.

H❤rtDown Design: Reading Environment

• Equation relationships

(*)When clicking an equation, H❤ rtDown highlights the terms involved in the formula as well as downstream uses of the symbol.

H❤ rtDown solves a graph coloring problem to color symbols distinctly.

% H❤ rtDown solves a graph coloring problem using a greedy technique [Liu et al. 2021] to ensure symbols in the same equation have different colors.

H❤rtDown Design: Experimenter (making use of)

(*)Here’s an example use of H❤ rtDown as an experimenter. This example describes a clustering algorithm.

We generate the output by compiling the source code.

The paper uses the L1 norm to calculate distances. The user changes the math to use the more common L2 norm.

H❤ rtDown updates both the typeset math and the figure that relies on the generated code library.

The new cluster centers have changed and are now heavily influenced by the outliers.

We can also click the figure to update the figure code, in this case, H❤ rtDown will only rerun the figure code.

###

The generated code libraries are saved into files and can be used outside of the H❤ rtDown reading/authoring environment.

We’ll show examples of that in our case studies.

Implementation

To learn about H❤ rtDown’s implementation,

% This figure shows the overall structure for H❤ rtDown’s implementation.

Implementation

Watch the longer talk or read the paper

please watch Yong’s longer talk or read the paper.

H❤rtDown Case Studies

We converted a variety of SIGGRAPH papers and paper sections to H❤ rtDown as case studies.

########

Our criteria for selecting papers were that they use linear algebra implementable by I❤ LA

The papers are from the past five years (2017–2021) of SIGGRAPH and span geometry processing, image processing, visualization, simulation, and rendering.

It include 5 full papers and 9 papers for which we implemented single subsections

H❤rtDown Case Studies

Each case study includes the H❤ rtDown source file, H❤ rtDown’s generated paper reading environment, and H❤ rtDown’s generated code library for C++, Python and
MATLAB.

We also provide a link to the original paper for comparison and side-by-side screenshots.

Expert Study

• 3 CS PhD students
• Author an original document related to their computer graphics research

• Spent 24, 7, and 6 hours, respectively, using H❤rtDown over a period
of two weeks

We recruited 3 computer science PhD students for an expert study.

In our experiment, participants were given initial and follow-up questionnaires to understand their current practices and share their thoughts about H❤ rtDown.

They spent a total of 24, 7, and 6 hours, respectively, using H❤ rtDown over a period of two weeks.

For the tasks in our expert study,

Expert StudyExpert Study: Observations and Conclusions

“H❤rtDown is an excellent
tool to share tutorial[s] online—
it highlights the vector
dimension and variable
meaning...following all the
vectors/matrices/their dims is
the hardest part of
reproducing a paper.”

(*) One expert wrote a tutorial for discrete elastic rods. This tutorial is now more readable due to math augmentations and can be used in addition to reading since it self-
generates code in any programming languages I❤ LA supports.

That expert said: “H❤ rtDown is an excellent tool to share tutorial[s] online—it highlights the vector dimension and variable meaning...following all the vectors/matrices/
their dims is the hardest part of reproducing a paper.”

Please see the longer talk or the paper for an in-depth discussion.

Limitations

• H❤rtDown does not consider pseudocode or algorithmic steps
described in prose

• The space of executable math and potential application domains
for H❤rtDown is much broader than linear algebra

[Gissler et al. 2020]

One limitation of H❤ rtDown is that it does not consider pseudocode, literate programming, or algorithmic steps described in prose. Algorithms are often needed to
make formulas useful.

Another limitation stems from the kinds of formulas that our extended version of I❤ LA can handle.

Future Work

• Automatic conversion from LaTeX to H❤rtDown

• A proof checker to verify derivations

• Callbacks and delegates for expanding the abilities of the generated
code

• Support for active reading (e.g. annotating and comparing)

There are a lot of directions we’d like to explore in the future.

Automatic or semi-automatic conversion from LaTeX to H❤ rtDown

Incorporating a proof checker to verify derivations

Explore callbacks and delegates for expanding the abilities of the generated code

Improve our reading environment to support active reading activities such as annotating and comparing

Conclusions

• H❤rtDown is a low-overhead, ecologically compatible document
processor

• H❤rtDown supports authors and improves replicability, readability,
and experimentation

• Participants in our expert study found uses for H❤rtDown in their
research practice.

In conclusion,

H❤ rtDown is a low-overhead, ecologically compatible document processor

H❤ rtDown supports authors and improves replicability, readability, and experimentation

Participants In our expert study found uses for H❤ rtDown in their research practice.

H❤rtDown
https://iheartla.github.io/heartdown/

Acknowledgements: Anonymous reviewers, Seth Walker, Zoya Bylinskii, Zhecheng Wang, Xue Yu, Jialin Huang
Sponsors: Canada Research Chairs Program, Sloan Foundation, Adobe Inc.

H❤ rtDown can be used at all stages of research

(from experimenting with the seed of an idea, to writing the final paper)

Thanks for listening!

Please try our language.

You are welcome to contact us in the future.

