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# Surface Fairing
v: fairing

Surface fairing given boundary constraints depends on the order of the Laplacian. A simple

="def"-graph Laplacian $L$ can be written in terms of the adjacency matrix $A$ and the
="def">degree matrix $D$ . Those matrices can be derived purely from the ="def">the
edges of the mesh $E$
" "1heartla

A1l =41 11f (1,7) € E
1 1f (3,1) € E
® otherwise
D_11 = )_7] A_17]
L=D"1T(CD-A)
where
E € { ZxZ } 1ndex
A € RA(nxn): The adjacency matrix

n € Z: The number of mesh vertices

We then solve a system of equations $Lx = 0% for free vertices to obtain the fair surface. We can write

="def"-the fair mesh vertices $V'$ directly given ="def"-boundary constraints
provided as a binary vector $B% with 1's for boundary vertices , a large scalar
="def:w">constraint weight ww=10A6e, and ="def"-3D vertices for the constrained mesh
$V$ ‘
" "1heartla

diag from lLinearalgebra

V' = (L + wdiag(B)) * (w diag(B) V)
where
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v: fairing

Surface fairing given boundary constraints depends on the order of the Laplacian. A simple
="def"-graph Laplacian $L$ can be written in terms of the adjacency matrix $A$ and the degree
matrix D. Those matrices can be derived purely from the ="def"-the edges of the mesh $E$

We then solve a system of equations $Lx = 0% for free vertices to obtain the fair surface. We can write
="def"-the fair mesh vertices $V'$ directly given ="def"-boundary constraints
, a large scalar
="def"-3D vertices for the constrained mesh

provided as a binary vector $B$ with 1's for boundary vertices
="def:w">constraint weight

ew=10A6e, and
$V$

fairing: D

Missing descriptions for symbols:

~ Compile

1 Surface Fairing

Surface fairing given boundary constraints depends on the order of the Laplacian.
A simple graph Laplacian [, can be written in terms of the adjacency matrix A
and the degree matrix D. Those matrices can be derived purely from the the edges
of the mesh E.

1 if (4,) €E
'Ai’j =41 if (,77 1’) ck

0 otherwise
D= Z Aij
J
L=D"'(D-4)

We then solve a system of equations Lz = 0 for free vertices to obtain the fair
surface. We can write the fair mesh vertices V' directly given boundary con-
straints provided as a binary vector B with 1’s for boundary vertices, a large

V' = (L + wdiag (B)) " (wdiag (B).Y) (2)

\ g &
(8)

Fairing the middle half of a cylinder.

Glossary of fairing

A € R™™™ The adjacency
matrix

B € 7™ boundary con-
straints provided as a bi-
nary vector B with 1's
for boundary vertices

D € R™"

E set type: the edges of
the mesh F

L E R™": graph Laplacian

V € R™3: 3D vertices for
the constrained mesh V'

V' € R"*3: the fair mesh
vertices V'

n € Z: The number of
mesh vertices

w € R: constraint weight
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Using this methed of interpolation, define new control points

between each pair of adjacent control points {3, 81}, {51, Sa} and {32, 53 }:
SN Ba(1 — 1) — At
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ABSTRACT nonce word buttons to open definition,
Despite the central importance of research papers to scientific (the symbol "k") formula, and usage lists

often

progress, they can be difficult to read. Comprehension
stymied when the information needed to understand a passage
resides somewhere else—in another section, or in another paper. In
this work, we envision how interfaces can bring definitions of tech-
nical terms and symbols to readers when and where they need them
most. We introduce ScholarPhi, an augmented reading interface
with four novel features: (1) tooltips that surface position-sensitive
definitions from elsewhere in a paper, (2) a filter over the paper
that “declutters” it to reveal how the term or symbol is used across
the paper, (3) automatic equation diagrams that expose multiple
definitions in parallel, and (4) an automatically generated glossary
of important terms and symbols. A usability study showed that
the tool helps researchers of all experience levels read papers. Fur-
thermore, researchers were eager to have ScholarPhi’s definitions
available to support their everyday reading

CCS CONCEPTS

- Human-centered computing — Interactive systems and tools.
KEYWORDS

interactive d reading interf ientific papers, defini-

tions, nonce words

ACM Reference Format:

Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg,
Daniel S. Weld, and Marti A. Hearst. 2021. Augmenting Scientific Papers
with Just-in-Time, Position-Sensitive Definitions of Terms and Symbols. In
CHI Conference on Human Factors in Computing Systems (CHI '21), May 813,
2021, Yokohama, Japan. ACM, New York, NY, USA, 18 pages. https://doi.org

10.1145/3411764.3445648

1 INTRODUCTION

Researchers are charged with keeping on top of immense, rapidly-
changing literatures. Naturally, then, reading constitutes a major
part of a researcher’s everyday work. Senior researchers, such as

CHI '21, May 8~13, 2021, Yokohama, Japan

© 2021 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in CHI Conference
fuman Factors in Computing Systems (CHI '21), May §~13, 2021, Yokohama, Japan,

https://doi.org/10.1145/3411764.3445648.
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Figure 1: ScholarPhi helps readers understand nonce words—
unique technical terms and symbols—defined within scien-
tific papers. When a reader comes across a nonce word that they
do not understand, ScholarPhi lets them click the word to view a
position-sensitive definition in a compact tooltip. The tooltip lets
the reader jump to the definition in context. It also lets them open
lists of prose definitions, defining formulae, and usages of the word.
ScholarPhi augments the reading experience with this and a host
of other features (see Section 4) to assist readers.

faculty members, spend over one hundred hours a year reading the
literature, consuming over one hundred papers annually [97]. And
despite the formidable back d knowledge that a researcher
gains over the course of their career, they will still often find that
papers are prohibitively difficult to read.

As they read, a researcher is constantly trying to fit the infor-
‘mation they find into schemas of their prior knowledge, but the
success of this assimilation is by no means guaranteed [7]. A re-
searcher may struggle to understand a paper due to gaps in their
own knowledge, or due to the intrinsic difficulty of reading a spe-
cific paper [7]. Reading is made all the more challenging by the
fact that scholars increasingly read selectively, looking for specific
information by skimming and scanning [34, 70, 98].

‘We are motivated by the question: Can a novel interface improve
the reading experience by reducing distractions that interrupt the
reading flow? This work takes a measured step to address the gen-
eral design question by focusing on the specific case of helping
readers understand cryptic technical terms and symbols defined
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Design Goals

* Support authoring, reading, and making use of (experimenting with)
* Correct and reproducible documents

* Minimal authoring overhead

* Ecological compatibility

* Don’t change what authors put in papers (prose, math, figures,
tables)

* Minimal changes to how they write
* Plain text documents
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Formative Study

* All appear to be written using LaTleX.
* Observations:
Prose organizes the document, interleaved with math.

Math appears out of order. Symbols used before defined.
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orer cousecuve puses ht lock Ik a gpec). maze, ilse e,
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21 Denumeic
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» IS¢ robust to nossy input datn - in low Mght the agoritam
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examples of demesrising arifecty that cer raihod wnids cabe
Bleeé (21 Jous of details (b-c) axd zippes artifacts i} b
we aleo shiov the Nimings and ceagpwiational prfecmance of the
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63 Comparisan on Real Captured Bursts
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We et ol e caprured wnth 2 Googele
Preel 3 phea rzeswes Wi cmmpaer spains! both single-frams demo-
sicing and the sotio-tewpoeal Wiener-iter descrived by Havinoff
atal. [2012]. wich also pecforms a burst marze. s the wprat of all
teckinues 5510 lineas sporce sl i blured by the lnes, we tharpen
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pixels) and apply obal tonemappiag - a0 S-shaped curve with
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[ Section 5.1.2 we describe adacting the spatial suppoet of the
sampling kernel hysas: on the lncal pradimt structne e Ve
e the s-agnitu o the sracturs lmsur' deaminant vipemoidar 3
10 drive the spotial soppert of the barnal and tw trade-off between
1he 55 hy winre 332 is d
desired anisatropy olll'n keenels (Rigure 7 in the w3ain papes
st We use the Bllrwing hescistics to ostimate the kermel shapes
(g sond b3 an Beguaeiom (1) n thie maee papes lect)
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Hardheld Mukti-frame Super-Resoiution +

effeccivedy also overrideg the snisotrop stretching in regions ta:
are cardidates fac dencisog.

The coasaudag behind these heurlstics is that small dominaat
eigenvalues {comparable to Ih: accunt of noise expected in the
Even e Image) Sgnlty red flat. nolsy. while Jargs
etgenalues appear acound -mm ‘whase esolotion we want fo
enhance (Figure 24) Pigure 24 beft ané middle show the visual im-
poit of kg, parametes, while the contrast of the mack presented
s the right depenids on Oy s 0

$3 Tuning Procedun and Parameters
In this section we describe the tuning parameters that we used
for the results presented foe our shoorithm. Parameters that affect
the ade-aff between the ressliubea-increae ané spabi-teeparal
omimsing, (Sexctinn 5 1) deperd an thi sgnal-to-nimse et of the
inpot frames. In such case the parameters are pece-wise kneac
functinns o€ SNI ie. tae range [6.30],
Ty 116,392 64 px,
Ferant = [024,
Feesoiee = [30,.,50],
a.0¢),

The ¥y ¥ geganr, 3 My are in units of pleels, Oy and Uy are in
units o graciear ravgnitude of the Ewge poemalized to the range
[6,... 1] The rexcalning parameters are erthes unitless muhtipliers
demsions Ferrsoch, Kitiua) 07 opeeare om codor éaerences narml-
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Theoagh theoguscat processwe ot pe e (it i
sines vestars relative to the base frame,

Unike gl o). (201€], we e subperl scccte sl
et e o0 Toadines
2 dtfecees. dedicared regieration algorithm designed for accurate
sabpsel estimation ez Fieet and Jepsae, [1390]), or refine the blacc
matchang, m-.hn We opted far the latter de 10 s simpbeity and
g the sl w
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3 OVERVIEW OF QUR METHOD
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Fig. 4. Subpixel displacements from handheld motion: lllustration of a burst of four frames with linear hand motion. Each frame is offset from the
previous frame by half a pixel along the x-axis and a quarter pixel along the y-axis due to the hand motion. After alignment to the base frame, the pixel
centers (black dots) uniformly cover the resampling grid (grey lines) at an increased density. In practice, the distribution is more random than in this simplified

example.
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Fig. 5. Distribution of estimated subpixel displacements: Histogram
of x and y subpixel displacements as computed by the alignment algorithm
(Section 3.2). While the alignment process is biased towards whole-pixel
values, we observe sufficient coverage of subpixel values to motivate super-
resolution. Note that displacements in x and y are not correlated.

5.1 Kernel Reconstruction

The core of our algorithm is built on the idea of treating pixels of
multiple raw Bayer frames as irregularly offset, aliased and noisy
measurements of three different underlying continuous signals,
one for each color channel of the Bayer mosaic. Though the color
channels are often correlated, in the case of saturated colors (for
example red, green or blue only) they are not. Given sufficient spatial
coverage, separate per-channel reconstruction allows us to recover
the original high resolution signal even in those cases.

To produce the final output image we processes all frames sequen-
tially — for every output image pixel, we evaluate local contributions
to the red, green and blue color channels from different input frames.
Every input raw image pixel has a different color channel, and it con-
tributes only to a specific output color channel. Local contributions
are weighted; therefore, we accumulate weighted contributions and
weights. At the end of the pipeline, those contributions are normal-
ized. For each color channel, this can be formulated as:

Zn Zi Cni- " Wn,i- Ry
Zn Ei Wn,i * Rn

C(x,y) = 3 (1)
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Fig. 6. Sparse data reconstruction with anisotropic kernels: Exagger-
ated example of very sharp (i.e., narrow, kgesqi1 = 0.05px) kernels on a real
captured burst. For demonstration purposes, we represent samples corre-
sponding to whole RGB input pictures instead of separate color channels.
Kernel adaptation allows us to apply differently shaped kernels on edges
(orange), flat (blue) or detailed areas (green). The orange kernel is aligned
with the edge, the blue one covers a large area as the region is flat, and the
green one is small to enhance the resolution in the presence of details.

where (x,y) are the pixel coordinates, the sum }}, is over all con-
tributing frames, }}; is a sum over samples within a local neighbor-
hood (in our case 3x3), c,,; denotes the value of the Bayer pixel at
given frame n and sample i, wy, ; is the local sample weight and R,
is the local robustness (Section 5.2). In the case of the base frame, R
is equal to 1 as it does not get aligned, and we have full confidence
in its local sample values.

To compute the local pixel weights, we use local radial basis
function kernels, similarly to the non-parametric kernel regression
framework of Takeda et al. [2006; 2007]. Unlike Takeda et al., we
don’t determine kernel basis function parameters at sparse sample
positions. Instead, we evaluate them at the final resampling grid
positions. Furthermore, we always look at the nine closest sam-
ples in a 3 X 3 neighborhood and use the same kernel function for
all those samples. This allows for efficient parallel evaluation on a
GPU. Using this "gather" approach every output pixel is indepen-
dently processed only once per frame. This is similar to work of

Math appears out of order onskieia 2019

Fig. 7. Anisotropic Kernels: Left: When isotropic kernels (ksrercn = 1,
kshrink = 1,see supplemental material) are used, small misalignments cause
heavy zipper artifacts along edges. Right: Anisotropic kernels (kssyerch = 4.
kshrink = 2) fix the artifacts.

Yu and Turk [2013], developed for fluid rendering. Two steps de-
scribed in the following sections are: estimation of the kernel shape
(Section 5.1.1) and robustness based sample contribution weighting
(Section 5.2).

5.1.1 Local Anisotropic Merge Kernels. Given our problem formula-
tion, kernel weights and kernel functions define the image quality
of the final merged image: kernels with wide spatial support pro-
duce noise-free and artifact-free, but blurry images, while kernels
with very narrow support can produce sharp and detailed images. A
natural choice for kernels used for signal reconstruction are Radial
Basis Function kernels - in our case anisotropic Gaussian kernels.
We can adjust the kernel shape to different local properties of the
input frames: amounts of detail and the presence of edges (Figure 6).
This is similar to kernel selection techniques used in other sparse
data reconstruction applications [Takeda et al. 2006, 2007; Yu and
Turk 2013].

Specifically, we use a 2D unnormalized anisotropic Gaussian RBF
for wp i:

1 -
Wp,i = €xp (——2-de 1d,-) ’ (2)

where Q is the kernel covariance matrix and d; is the offset vector
of sample i to the output pixel (d; = [x; — x0,y; — yo]T).

One of the main motivations for using anisotropic kernels is that
they increase the algorithm’s tolerance for small misalignments
and uneven coverage around edges. Edges are ambiguous in the
alignment procedure (due to the aperture problem) and result in
alignment errors [Robinson and Milanfar 2004] more frequently
compared to non-edge regions of the image. Subpixel misalignment
as well as a lack of sufficient sample coverage can manifest as zipper
artifacts (Figure 7). By stretching the kernels along the edges, we can
enforce the assignment of smaller weights to pixels not belonging
to edges in the image.

5.1.2 Kernel Covariance Computation. We compute the kernel co-
variance matrix by analyzing every frame’s local gradient structure
tensor. To improve runtime performance and resistance to image
noise, we analyze gradients of half-resolution images formed by
decimating the original raw frames by a factor of two. To decimate a
Bayer image containing different color channels, we create a single

Handheld Multi-Frame Super-Resolution « 28:7
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Fig. 8. Merge kernels: Plots of relative weights in different 3 X 3 sampling
kernels as a function of local tensor features.

pixel from a 2 X 2 Bayer quad by combining four different color
channels together. This way, we can operate on single channel lumi-
nance images and perform the computation at a quarter of the full
resolution cost and with improved signal-to-noise ratio. To estimate
local information about strength and direction of gradients, we use
gradient structure tensor analysis [Bigiin et al. 1991; Harris and

Stephens 1988]:
£ L Ll

where I, and I are the local image gradients in horizontal and
vertical directions, respectively. The image gradients are computed
by finite forward differencing the luminance in a small, 3 X 3 color
window (giving us four different horizontal and vertical gradient
values). Eigenanalysis of the local structure tensor Q gives two
orthogonal direction vectors ej, ez and two associated eigenvalues
A1, A2. From this, we can construct the kernel covariance as:

ety ]

where k; and k; control the desired kernel variance in either edge
or orthogonal direction. We control those values to achieve adaptive
super-resolution and denoising. We use the magnitude of the struc-
ture tensor’s dominant eigenvalue A; to drive the spatial support
of the kernel and the trade-off between the super-resolution and
denoising, where %I%E is used to drive the desired anisotropy of
the kernels (Figure 8). The specific process we use to compute the
final kernel covariance can be found in the supplemental material
along with the tuning values. Since Q is computed at half of the
Bayer image resolution, we upsample the kernel covariance values
through bilinear sampling before computing the kernel weights.

5.2 Motion Robustness

Reliable alignment of an arbitrary sequence of images is extremely
challenging — because of both theoretical [Robinson and Milanfar
2004] and practical (available computational power) limitations.
Even assuming the existence of a perfect registration algorithm,
changes in scene and occlusion can result in some areas of the
photographed scene being unrepresented in many frames of the

ACM Trans. Graph., Vol. 38, No. 4, Article 28. Publication date: July 2019.
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Fig. 4. Subpixel displacements from handheld motion: lllustration of a burst of four frames with linear hand motion. Each frame is offset from the
previous frame by half a pixel along the x-axis and a quarter pixel along the y-axis due to the hand motion. After alignment to the base frame, the pixel
centers (black dots) uniformly cover the resampling grid (grey lines) at an increased density. In practice, the distribution is more random than in this simplified

example.
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Fig. 5. Distribution of estimated subpixel displacements: Histogram
of x and y subpixel displacements as computed by the alignment algorithm
(Section 3.2). While the alignment process is biased towards whole-pixel
values, we observe sufficient coverage of subpixel values to motivate super-
resolution. Note that displacements in x and y are not correlated.

5.1 Kernel Reconstruction

The core of our algorithm is built on the idea of treating pixels of
multiple raw Bayer frames as irregularly offset, aliased and noisy
measurements of three different underlying continuous signals,
one for each color channel of the Bayer mosaic. Though the color
channels are often correlated, in the case of saturated colors (for
example red, green or blue only) they are not. Given sufficient spatial
coverage, separate per-channel reconstruction allows us to recover
the original high resolution signal even in those cases.

To produce the final output image we processes all frames sequen-
tially — for every output image pixel, we evaluate local contributions
to the red, green and blue color channels from different input frames.
Every input raw image pixel has a different color channel, and it con-
tributes only to a specific output color channel. Local contributions
are weighted; therefore, we accumulate weighted contributions and
weights. At the end of the pipeline, those contributions are normal-
ized. For each color channel, this can be formulated as:
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Fig. 6. Sparse data reconstruction with anisotropic kernels: Exagger-
ated example of very sharp (i.e., narrow, kgesqi1 = 0.05px) kernels on a real
captured burst. For demonstration purposes, we represent samples corre-
sponding to whole RGB input pictures instead of separate color channels.
Kernel adaptation allows us to apply differently shaped kernels on edges
(orange), flat (blue) or detailed areas (green). The orange kernel is aligned
with the edge, the blue one covers a large area as the region is flat, and the
green one is small to enhance the resolution in the presence of details.

where (x,y) are the pixel coordinates, the sum }}, is over all con-
tributing frames, }}; is a sum over samples within a local neighbor-
hood (in our case 3x3), c,,; denotes the value of the Bayer pixel at
given frame n and sample i, wy, ; is the local sample weight and R,
is the local robustness (Section 5.2). In the case of the base frame, R
is equal to 1 as it does not get aligned, and we have full confidence
in its local sample values.

To compute the local pixel weights, we use local radial basis
function kernels, similarly to the non-parametric kernel regression
framework of Takeda et al. [2006; 2007]. Unlike Takeda et al., we
don’t determine kernel basis function parameters at sparse sample
positions. Instead, we evaluate them at the final resampling grid
positions. Furthermore, we always look at the nine closest sam-
ples in a 3 X 3 neighborhood and use the same kernel function for
all those samples. This allows for efficient parallel evaluation on a
GPU. Using this "gather" approach every output pixel is indepen-
dently processed only once per frame. This is similar to work of

Math appears out of order onskieia 2019

Fig. 7. Anisotropic Kernels: Left: When isotropic kernels (ksrercn = 1,
kshrink = 1,see supplemental material) are used, small misalignments cause
heavy zipper artifacts along edges. Right: Anisotropic kernels (kssyerch = 4.
kshrink = 2) fix the artifacts.

Yu and Turk [2013], developed for fluid rendering. Two steps de-
scribed in the following sections are: estimation of the kernel shape
(Section 5.1.1) and robustness based sample contribution weighting
(Section 5.2).

5.1.1 Local Anisotropic Merge Kernels. Given our problem formula-
tion, kernel weights and kernel functions define the image quality
of the final merged image: kernels with wide spatial support pro-
duce noise-free and artifact-free, but blurry images, while kernels
with very narrow support can produce sharp and detailed images. A
natural choice for kernels used for signal reconstruction are Radial
Basis Function kernels - in our case anisotropic Gaussian kernels.
We can adjust the kernel shape to different local properties of the
input frames: amounts of detail and the presence of edges (Figure 6).
This is similar to kernel selection techniques used in other sparse
data reconstruction applications [Takeda et al. 2006, 2007; Yu and
Turk 2013].

Specifically, we use a 2D unnormalized anisotropic Gaussian RBF
for wp i:

1 -
Wp,i = €xp (——2-de 1d,-) ’ (2)

where Q is the kernel covariance matrix and d; is the offset vector
of sample i to the output pixel (d; = [x; — x0,y; — yo]T).

One of the main motivations for using anisotropic kernels is that
they increase the algorithm’s tolerance for small misalignments
and uneven coverage around edges. Edges are ambiguous in the
alignment procedure (due to the aperture problem) and result in
alignment errors [Robinson and Milanfar 2004] more frequently
compared to non-edge regions of the image. Subpixel misalignment
as well as a lack of sufficient sample coverage can manifest as zipper
artifacts (Figure 7). By stretching the kernels along the edges, we can
enforce the assignment of smaller weights to pixels not belonging
to edges in the image.

5.1.2 Kernel Covariance Computation. We compute the kernel co-
variance matrix by analyzing every frame’s local gradient structure
tensor. To improve runtime performance and resistance to image
noise, we analyze gradients of half-resolution images formed by
decimating the original raw frames by a factor of two. To decimate a
Bayer image containing different color channels, we create a single
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Fig. 8. Merge kernels: Plots of relative weights in different 3 X 3 sampling
kernels as a function of local tensor features.

pixel from a 2 X 2 Bayer quad by combining four different color
channels together. This way, we can operate on single channel lumi-
nance images and perform the computation at a quarter of the full
resolution cost and with improved signal-to-noise ratio. To estimate
local information about strength and direction of gradients, we use
gradient structure tensor analysis [Bigiin et al. 1991; Harris and

Stephens 1988]:
£ L Ll

where I, and I are the local image gradients in horizontal and
vertical directions, respectively. The image gradients are computed
by finite forward differencing the luminance in a small, 3 X 3 color
window (giving us four different horizontal and vertical gradient
values). Eigenanalysis of the local structure tensor Q gives two
orthogonal direction vectors ej, ez and two associated eigenvalues
A1, A2. From this, we can construct the kernel covariance as:

ety ]

where k; and k; control the desired kernel variance in either edge
or orthogonal direction. We control those values to achieve adaptive
super-resolution and denoising. We use the magnitude of the struc-
ture tensor’s dominant eigenvalue A; to drive the spatial support
of the kernel and the trade-off between the super-resolution and
denoising, where %I%E is used to drive the desired anisotropy of
the kernels (Figure 8). The specific process we use to compute the
final kernel covariance can be found in the supplemental material
along with the tuning values. Since Q is computed at half of the
Bayer image resolution, we upsample the kernel covariance values
through bilinear sampling before computing the kernel weights.

5.2 Motion Robustness

Reliable alignment of an arbitrary sequence of images is extremely
challenging — because of both theoretical [Robinson and Milanfar
2004] and practical (available computational power) limitations.
Even assuming the existence of a perfect registration algorithm,
changes in scene and occlusion can result in some areas of the
photographed scene being unrepresented in many frames of the
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Fig. 4. Subpixel displacements from handheld motion: lllustration of a burst of four frames with linear hand motion. Each frame is offset from the
previous frame by half a pixel along the x-axis and a quarter pixel along the y-axis due to the hand motion. After alignment to the base frame, the pixel
centers (black dots) uniformly cover the resampling grid (grey lines) at an increased density. In practice, the distribution is more random than in this simplified

example.
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Fig. 5. Distribution of estimated subpixel displacements: Histogram
of x and y subpixel displacements as computed by the alignment algorithm
(Section 3.2). While the alignment process is biased towards whole-pixel
values, we observe sufficient coverage of subpixel values to motivate super-
resolution. Note that displacements in x and y are not correlated.

5.1 Kernel Reconstruction

The core of our algorithm is built on the idea of treating pixels of
multiple raw Bayer frames as irregularly offset, aliased and nojg
measurements of three different underlying continuous gj¢#hals,
one for each color channel of the Bayer mosaic. Thoughthe color
channels are often correlated, in the case of saturatgfl colors (for
example red, green or blue only) they are not. Givengffficient spatial
coverage, separate per-channel reconstruction alféws us to recover
the original high resolution signal even in thogf cases.

To produce the final output image we procegpes all frames sequen-
tially — for every output image pixel, we evalyate local contributions
to the red, green and blue color channels frogh different input frames.
Every input raw image pixel has a different Solor channel, and it con-
tributes only to a specific output color chafinel. Local contributions
are weighted; therefore, we accumulate wglighted contributions and
weights. At the end of the pipeline, those fontributions are normal-
ized. For each color channel, this can be\@@Fmulated as:
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Fig. 6. Sparse data reconstruction with anisotropic kernels: Exagger-
ated example of very sharp (i.e., narrow, kgesqi1 = 0.05px) kernels on a real
captured burst. For demonstration purposes, we represent samples corre-
sponding to whole RGB input pictures instead of separate color channels.
Kernel adaptation allows us to apply differe b ned kaiRalsaiadgs
(orange), flat (blue) or dgias green). The orange kernel is aligned
with the edges®®Dblue one covers a large area as the region is flat, and the
one is small to enhance the resolution in the presence of details.

where (x,y) are the pixel coordinates, the sum };, is over all con-
tributing frames, }}; is a sum over samples within a local neighbor-
hood (in our case 3x3), c,,; denotes the value of the Bayer pixel at
given frame n and sample i, wy, ; is the local sample weight and R,
is the local robustness (Section 5.2). In the case of the base frame, R
is equal to 1 as it does not get aligned, and we have full confidence
in its local sample values.

To compute the local pixel weights, we use local radial basis
function kernels, similarly to the non-parametric kernel regression
framework of Takeda et al. [2006; 2007]. Unlike Takeda et al., we
don’t determine kernel basis function parameters at sparse sample
positions. Instead, we evaluate them at the final resampling grid
positions. Furthermore, we always look at the nine closest sam-
ples in a 3 X 3 neighborhood and use the same kernel function for
all those samples. This allows for efficient parallel evaluation on a
GPU. Using this "gather" approach every output pixel is indepen-
dently processed only once per frame. This is similar to work of
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Fig. 7. Anisotropic Kernels: Left: When isotropic kernels (ksrercn = 1,
kshrink = 1,see supplemental material) are used, small misalignments cause
heavy zipper artifacts along edges. Right: Anisotropic kernels (kssyerch = 4.
kshrink = 2) fix the artifacts.

Yu and Turk [2013], developed for fluid rendering. Two steps de-
scribed in the following sections are: estimation of the kernel shape
(Section 5.1.1) and robustness based sample contribution weighting
(Section 5.2).

5.1.1 Local Anisotropic Merge Kernels. Given our problem formula-
tion, kernel weights and kernel functions define the image quality
of the final merged image: kernels with wide spatial support pro-
duce noise-free and artifact-free, but blurry images, while kernels
with very narrow support can produce sharp and detailed images. A
natural choice for kernels used for signal reconstruction are Radial
Basis Function kernels - in our case anisotropic Gaussian kernels.
We can adjust the kernel shape to different local properties of the
input frames: amounts of detail and the presence of edges (Figure 6).
This is similar to kernel selection techniques used in other sparse
data reconstruction applications [Takeda et al. 2006, 2007; Yu and
Turk 2013].

Specifically, we use a 2D unnormalized anisotropic Gaussian RBF

-
]

1 -
Wn,i = €xp —EdiTQ i, (2)

where Q is the kernel covariance matrix and d; is the offset vector
of sample i to the output pixel (d; = [x; — x0,y; — yo]T).

One of the main motivations for using anisotropic kernels is that
they increase the algorithm’s tolerance for small misalignments
and uneven coverage around edges. Edges are ambiguous in the
alignment procedure (due to the aperture problem) and result in
alignment errors [Robinson and Milanfar 2004] more frequently
compared to non-edge regions of the image. Subpixel misalignment
as well as a lack of sufficient sample coverage can manifest as zipper
artifacts (Figure 7). By stretching the kernels along the edges, we can
enforce the assignment of smaller weights to pixels not belonging
to edges in the image.

5.1.2 Kernel Covariance Computation. We compute the kernel co-
variance matrix by analyzing every frame’s local gradient structure
tensor. To improve runtime performance and resistance to image
noise, we analyze gradients of half-resolution images formed by
decimating the original raw frames by a factor of two. To decimate a
Bayer image containing different color channels, we create a single
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Fig. 8. Merge kernels: Plots of relative weights in different 3 X 3 sampling
kernels as a function of local tensor features.

pixel from a 2 X 2 Bayer quad by combining four different color
channels together. This way, we can operate on single channel lumi-
nance images and perform the computation at a quarter of the full
resolution cost and with improved signal-to-noise ratio. To estimate
local information about strength and direction of gradients, we use
gradient structure tensor analysis [Bigiin et al. 1991; Harris and

Stephens 1988]:

Q= [Iny | )
where I, and I are the local image gradients in horizontal and
vertical directions, respectively. The image gradients are computed
by finite forward differencing the luminance in a small, 3 X 3 color
window (giving us four different horizontal and vertical gradient
values). Eigenanalysis of the local structure tensor Q gives two
orthogonal direction vectors ej, ez and two associated eigenvalues
A1, A2. From this, we can construct the kernel covariance as:

ety ]

where k; and k; control the desired kernel variance in either edge
or orthogonal direction. We control those values to achieve adaptive
super-resolution and denoising. We use the magnitude of the struc-
ture tensor’s dominant eigenvalue A; to drive the spatial support
of the kernel and the trade-off between the super-resolution and

denoising, where %i;—ﬁi is used to drive the desired anisotropy of
the kernels (Figure 8). The specific process we use to compute the
final kernel covariance can be found in the supplemental material
along with the tuning values. Since Q is computed at half of the
Bayer image resolution, we upsample the kernel covariance values

through bilinear sampling before computing the kernel weights.

5.2 Motion Robustness

Reliable alignment of an arbitrary sequence of images is extremely
challenging — because of both theoretical [Robinson and Milanfar
2004] and practical (available computational power) limitations.
Even assuming the existence of a perfect registration algorithm,
changes in scene and occlusion can result in some areas of the
photographed scene being unrepresented in many frames of the
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Fig. 4. Subpixel displacements from handheld motion: lllustration of a burst of four frames with linear hand motion. Each frame is offset from the
previous frame by half a pixel along the x-axis and a quarter pixel along the y-axis due to the hand motion. After alignment to the base frame, the pixel
centers (black dots) uniformly cover the resampling grid (grey lines) at an increased density. In practice, the distribution is more random than in this simplified

example.
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Fig. 5. Distribution of estimated subpixel displacements: Histogram
of x and y subpixel displacements as computed by the alignment algorithm
(Section 3.2). While the alignment process is biased towards whole-pixel
values, we observe sufficient coverage of subpixel values to motivate super-
resolution. Note that displacements in x and y are not correlated.

5.1 Kernel Reconstruction

The core of our algorithm is built on the idea of treating pixels of
multiple raw Bayer frames as irregularly offset, aliased and nojg
measurements of three different underlying continuous gj¢#hals,
one for each color channel of the Bayer mosaic. Thoughthe color
channels are often correlated, in the case of saturatgfl colors (for
example red, green or blue only) they are not. Givengffficient spatial
coverage, separate per-channel reconstruction alféws us to recover
the original high resolution signal even in thogf cases.

To produce the final output image we procegpes all frames sequen-
tially — for every output image pixel, we evalyate local contributions
to the red, green and blue color channels frogh different input frames.
Every input raw image pixel has a different Solor channel, and it con-
tributes only to a specific output color chafinel. Local contributions
are weighted; therefore, we accumulate wglighted contributions and
weights. At the end of the pipeline, those fontributions are normal-
ized. For each color channel, this can be\@@Fmulated as:
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Fig. 6. Sparse data reconstruction with anisotropic kernels: Exagger-
ated example of very sharp (i.e., narrow, kgesqi1 = 0.05px) kernels on a real
captured burst. For demonstration purposes, we represent samples corre-
sponding to whole RGB input pictures instead of separate color channels.
Kernel adaptation allows us to apply differe b ned kaiRalsaiadgs
(orange), flat (blue) or dgias green). The orange kernel is aligned
with the edges®®Dblue one covers a large area as the region is flat, and the
one is small to enhance the resolution in the presence of details.

where (x,y) are the pixel coordinates, the sum };, is over all con-
tributing frames, }}; is a sum over samples within a local neighbor-
hood (in our case 3x3), c,,; denotes the value of the Bayer pixel at
given frame n and sample i, wy, ; is the local sample weight and R,
is the local robustness (Section 5.2). In the case of the base frame, R
is equal to 1 as it does not get aligned, and we have full confidence
in its local sample values.

To compute the local pixel weights, we use local radial basis
function kernels, similarly to the non-parametric kernel regression
framework of Takeda et al. [2006; 2007]. Unlike Takeda et al., we
don’t determine kernel basis function parameters at sparse sample
positions. Instead, we evaluate them at the final resampling grid
positions. Furthermore, we always look at the nine closest sam-
ples in a 3 X 3 neighborhood and use the same kernel function for
all those samples. This allows for efficient parallel evaluation on a
GPU. Using this "gather" approach every output pixel is indepen-
dently processed only once per frame. This is similar to work of

Math appears out of order onskieia 2019

Fig. 7. Anisotropic Kernels: Left: When isotropic kernels (ksrercn = 1,
kshrink = 1,see supplemental material) are used, small misalignments cause
heavy zipper artifacts along edges. Right: Anisotropic kernels (kssyerch = 4.
kshrink = 2) fix the artifacts.

Yu and Turk [2013], developed for fluid rendering. Two steps de-
scribed in the following sections are: estimation of the kernel shape
(Section 5.1.1) and robustness based sample contribution weighting
(Section 5.2).

5.1.1 Local Anisotropic Merge Kernels. Given our problem formula-
tion, kernel weights and kernel functions define the image quality
of the final merged image: kernels with wide spatial support pro-
duce noise-free and artifact-free, but blurry images, while kernels
with very narrow support can produce sharp and detailed images. A
natural choice for kernels used for signal reconstruction are Radial
Basis Function kernels - in our case anisotropic Gaussian kernels.
We can adjust the kernel shape to different local properties of the
input frames: amounts of detail and the presence of edges (Figure 6).
This is similar to kernel selection techniques used in other sparse
data reconstruction applications [Takeda et al. 2006, 2007; Yu and
Turk 2013].
Specifically, we use a 2D unnormalized anisotropic Gausgian RB

-
]

1 -
Wn,i = €xp —EdiTQ i, (2)

where Q is the kernel covariance matrix and d; is the offset vector
of sample i to the output pixel (d; = [x; — x0,y; — yo]T).

One of the main motivations for using anisotropic kernels is that
they increase the algorithm’s tolerance for small misalignments
and uneven coverage around edges. Edges are ambiguous in the
alignment procedure (due to the aperture problem) and result in
alignment errors [Robinson and Milanfar 2004] more frequently
compared to non-edge regions of the image. Subpixel misalignment
as well as a lack of sufficient sample coverage can manifest as zipper
artifacts (Figure 7). By stretching the kernels along the edges, we can
enforce the assignment of smaller weights to pixels not belonging
to edges in the image.

5.1.2 Kernel Covariance Computation. We compute the kernel co-
variance matrix by analyzing every frame’s local gradient structure
tensor. To improve runtime performance and resistance to image
noise, we analyze gradients of half-resolution images formed by
decimating the original raw frames by a factor of two. To decimate a
Bayer image containing different color channels, we create a single
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Fig. 8. Merge kernels: Plots of relative weights in different 3 X 3 sampling
kernels as a function of local tensor features.

pixel from a 2 X 2 Bayer quad by combining four different color
channels together. This way, we can operate on single channel lumi-
nance images and perform the computation at a quarter of the full
resolution cost and with improved signal-to-noise ratio. To estimate
local information about strength and direction of gradients, we use
gradient structure tensor analysis [Bigiin et al. 1991; Harris and

Stephens 1988]:

Q= [Iny ok )
where I, and I are the local image gradients in horizontal and
vertical directions, respectively. The image gradients are computed
by finite forward differencing the luminance in a small, 3 X 3 color
window (giving us four different horizontal and vertical gradient
values). Eigenanalysis of the local structure tensor Q gives two
orthogonal direction vectors ej, ez and two associated eigenvalues

: an construct the kernel covariance as:

ki 0 el
o=l ey of 3
where k; and k; control the desired kernel variance in either edge
or orthogonal direction. We control those values to achieve adaptive
super-resolution and denoising. We use the magnitude of the struc-

ture tensor’s dominant eigenvalue A; to drive the spatial support
of the kernel and the trade-off between the super-resolution and

4

denoising, where %i;—ﬁi is used to drive the desired anisotropy of
the kernels (Figure 8). The specific process we use to compute the
final kernel covariance can be found in the supplemental material
along with the tuning values. Since Q is computed at half of the
Bayer image resolution, we upsample the kernel covariance values

through bilinear sampling before computing the kernel weights.

5.2 Motion Robustness

Reliable alignment of an arbitrary sequence of images is extremely
challenging — because of both theoretical [Robinson and Milanfar
2004] and practical (available computational power) limitations.
Even assuming the existence of a perfect registration algorithm,
changes in scene and occlusion can result in some areas of the
photographed scene being unrepresented in many frames of the
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Fig. 4. Subpixel displacements from handheld motion: lllustration of a burst of four frames with linear hand motion. Each frame is offset from the
previous frame by half a pixel along the x-axis and a quarter pixel along the y-axis due to the hand motion. After alignment to the base frame, the pixel
centers (black dots) uniformly cover the resampling grid (grey lines) at an increased density. In practice, the distribution is more random than in this simplified

example.
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Fig. 5. Distribution of estimated subpixel displacements: Histogram
of x and y subpixel displacements as computed by the alignment algorithm
(Section 3.2). While the alignment process is biased towards whole-pixel
values, we observe sufficient coverage of subpixel values to motivate super-
resolution. Note that displacements in x and y are not correlated.

5.1 Kernel Reconstruction

The core of our algorithm is built on the idea of treating pixels of
multiple raw Bayer frames as irregularly offset, aliased and nojg
measurements of three different underlying continuous gj¢#hals,
one for each color channel of the Bayer mosaic. Thoughthe color
channels are often correlated, in the case of saturatgfl colors (for
example red, green or blue only) they are not. Givengffficient spatial
coverage, separate per-channel reconstruction alows us to recover
the original high resolution signal even in thogf cases.

To produce the final output image we proceges all frames seqy€n-
tially — for every output image pixel, we evalyate local contribfitions
to the red, green and blue color channels frogh different inpfit frames.
Every input raw image pixel has a different folor channgf! and it con-
tributes only to a specific output color chafinel. Loca}fcontributions
are weighted; therefore, we accumulate wglighted gbntributions and
weights. At the end of the pipeline, those fontrikfations are normal-
ized. For each color channel, this can be ated as:
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Fig. 6. Sparse data reconstruction with anisotropic kernels: Exagger-
ated example of very sharp (i.e., narrow, kgesqi1 = 0.05px) kernels on a real
captured burst. For demonstration purposes, we represent samples corre-
sponding to whole RGB input pictures instead of separate color channels.
Kernel adaptation allows us to apply differe b ned kaiRalsaiadgs
(orange), flat (blue) or dgias green). The orange kernel is aligned
with the edges®®Dblue one covers a large area as the region is flat, and the
one is small to enhance the resolution in the presence of details.

here (x,y) are the pixel coordinates, the sum }}, is over all con-
ributing frames, }}; is a sum over samples within a local neighbor-
ood (in our case 3X3), ¢, ; denotes the value of the Bayer pixel at

given frame n and sample i, wy, ; is the local sample weight and Rn
s the local robustness (Section 5.2). In the case of the base frame, R
s equal to 1 as it does not get aligned, and we have full confidence

() 0Cd AITIDIE dl C

To compute the local pixel weights, we use local radial basis
function kernels, similarly to the non-parametric kernel regression
framework of Takeda et al. [2006; 2007]. Unlike Takeda et al., we
don’t determine kernel basis function parameters at sparse sample
positions. Instead, we evaluate them at the final resampling grid
positions. Furthermore, we always look at the nine closest sam-
ples in a 3 X 3 neighborhood and use the same kernel function for
all those samples. This allows for efficient parallel evaluation on a
GPU. Using this "gather" approach every output pixel is indepen-
dently processed only once per frame. This is similar to work of

Math appears out of order onskieia 2019

Fig. 7. Anisotropic Kernels: Left: When isotropic kernels (ksrercn = 1,
kshrink = 1,see supplemental material) are used, small misalignments cause
heavy zipper artifacts along edges. Right: Anisotropic kernels (kssyerch = 4.
kshrink = 2) fix the artifacts.

Yu and Turk [2013], developed for fluid rendering. Two steps de-
scribed in the following sections are: estimation of the kernel shape
(Section 5.1.1) and robustness based sample contribution weighting
(Section 5.2).

5.1.1 Local Anisotropic Merge Kernels. Given our problem formula-
tion, kernel weights and kernel functions define the image quality
of the final merged image: kernels with wide spatial support pro-
duce noise-free and artifact-free, but blurry images, while kernels
with very narrow support can produce sharp and detailed images. A
natural choice for kernels used for signal reconstruction are Radial
Basis Function kernels - in our case anisotropic Gaussian kernels.
We can adjust the kernel shape to different local properties of the
input frames: amounts of detail and the presence of edges (Figure 6).
This is similar to kernel selection techniques used in other sparse
data reconstruction applications [Takeda et al. 2006, 2007; Yu and
Turk 2013].

Specifically, we use a 2D unnormalized anisotropic Gausgian RB

e offset vector
2 X 0 T
One of the main motivations for using anisotropic kernels is that
they increase the algorithm’s tolerance for small misalignments
and uneven coverage around edges. Edges are ambiguous in the
alignment procedure (due to the aperture problem) and result in
alignment errors [Robinson and Milanfar 2004] more frequently
compared to non-edge regions of the image. Subpixel misalignment
as well as a lack of sufficient sample coverage can manifest as zipper
artifacts (Figure 7). By stretching the kernels along the edges, we can
enforce the assignment of smaller weights to pixels not belonging
to edges in the image.

5.1.2 Kernel Covariance Computation. We compute the kernel co-
variance matrix by analyzing every frame’s local gradient structure
tensor. To improve runtime performance and resistance to image
noise, we analyze gradients of half-resolution images formed by
decimating the original raw frames by a factor of two. To decimate a
Bayer image containing different color channels, we create a single

Handheld Multi-Frame Super-Resolution « 28:7

0.03

A1 Presence of a sharp feature
0.01 0.015

0.1 0.5 0.9

% Presence of an edge

2

Fig. 8. Merge kernels: Plots of relative weights in different 3 X 3 sampling
kernels as a function of local tensor features.

pixel from a 2 X 2 Bayer quad by combining four different color
channels together. This way, we can operate on single channel lumi-
nance images and perform the computation at a quarter of the full
resolution cost and with improved signal-to-noise ratio. To estimate
local information about strength and direction of gradients, we use
gradient structure tensor analysis [Bigiin et al. 1991; Harris and

Stephens 1988]:

Q= [Ixzy ok )
where I, and I are the local image gradients in horizontal and
vertical directions, respectively. The image gradients are computed
by finite forward differencing the luminance in a small, 3 X 3 color
window (giving us four different horizontal and vertical gradient
values). Eigenanalysis of the local structure tensor Q gives two
orthogonal direction vectors ej, ez and two associated eigenvalues

: an construct the kernel covariance as:

ere k1 and ky control the desired kernel variance 1n either edge
or orthogonal direction. We control those values to achieve adaptive
super-resolution and denoising. We use the magnitude of the struc-
ture tensor’s dominant eigenvalue A; to drive the spatial support
of the kernel and the trade-off between the super-resolution and

denoising, where %ﬁ%ﬁ is used to drive the desired anisotropy of
the kernels (Figure 8). The specific process we use to compute the
final kernel covariance can be found in the supplemental material
along with the tuning values. Since Q is computed at half of the
Bayer image resolution, we upsample the kernel covariance values

through bilinear sampling before computing the kernel weights.

5.2 Motion Robustness

Reliable alignment of an arbitrary sequence of images is extremely
challenging — because of both theoretical [Robinson and Milanfar
2004] and practical (available computational power) limitations.
Even assuming the existence of a perfect registration algorithm,
changes in scene and occlusion can result in some areas of the
photographed scene being unrepresented in many frames of the

ACM Trans. Graph., Vol. 38, No. 4, Article 28. Publication date: July 2019.
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This is an excellent fit to the psychophysical data, with a mean
absolute error of 0.24 (equivalent to 9.4%) between measured and
predicted judder at the probed points. To present the reader with
an error metric that relates to physical quantities, we also com-
puted the mean error in the log-luminance domain (to avoid under
representing errors in low-luminance conditions). Given N as the
number of measured conditions, O(i) being the observed means
for each condition and M(i) values predicted by our model, we
calculate the error E as

N

& Jlog(0(3)) - logM())|
E= 20 1ogo0)

/N, (2)

If we introduce the simplifying assumption that the critical flicker
fusion rate (CFF) is linearly correlated through a factor M with
judder-sensitivity, then we can obtain a log-luminance equivalence
like the one queried in this experiment. Denoting F,; and F, as the
two frame rates and L,, Lj, as the luminances:

Fa =M % CFF(Ly) = M(a = log(Lgy) + b), (4)

Chapiro et al. 2019
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This is an excellent fit to the psychophysical data, with a mean
absolute error of 0.24 (equivalent to 9.4%) between measured and
predicted judder at the probed points. To present the reader with
an error metric that relates to physical quantities, we also com-
puted the mean error in the log-luminance domain (to avoid under
representing errors in low-luminance conditions). Given N as the
number of measured conditions, O(i) being the observed means
for each condition and M(i) values predicted by our model, we
calculate the error Eas

N

< llog(0(i)) - log(Mi(i))|
E‘z; bg0()

: (2)

If we introduce the simplifying assumption that the critical flicker
fusion rate (CFF) is linearly correlated through a factor M with
judder-sensitivity, then we can obtain a log-luminance equivalence
like the one queried in this experiment. Denoting F,; and F, as the
two frame rates and L,, L as the luminances:

F, = M % CFF(L,) =[Ma * log(Lg) + b), (4)

Chapiro et al. 2019
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We now consider the nine possible deformations #,’ generated
by setting f=e; and g=e; for every pair (i, j), where the vectors
e1, ey, e3} form an orthonormal bases spannin . Due to super-
{ } fi th al bases spanning R>. Due to sup
position, we can linearly combine u, with scalar coefficients F; s
and obtain a matrix-driven solution of (2) of the form

By computing the spatial derivatives of u., we obtain the displace-
ment field u.(r) in terms of the force matrix F:

~ 1 3¢2
us(r)=—-a|S+_——<|Fr
rg 2r;

u(r)= ), Fije VKe(r)e) =VK:(r):F.  (12) (14)

+b

1 " 3, ;
where F=|F;;| is a 3x3 force matrix, and the symbol : indicates the r3 (F+F" +te(F)I) - " (r'Fr)I ] r.
double contraction of F to the third-order tensor VK .(r), thus re-

turning a vector. Similarly, we can write the body load that generates

De Goes and James 2017/
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We now consider the nine possible deformations #,’ generated
by setting f=e; and g=e; for every pair (i, j), where the vectors
e1, €2, e3} form an orthonormal bases spanning R3. Due to super-
{ } S spanning p
position, we can linearly combine u, with scalar coefficients F; s

and obtain a matrix-driven solution of (2) of the form . ( 1 s 3¢2 ) Fr
VN7 37 5,5
= 2
)= Y, Fijey VK e) = VHKo(r) i F, (12 A
where F = [F,- j] is a 33 force matrix, and the symbol : indicates the

double contraction of F to the third-order tensor VK .(r), thus re-
turning a vector. Similarly, we can write the body load that generates

By computing the spatial derivatives of u., we obtain the displace-
ment field u.(r) in terms of the force matrix F:

(14)

+b

%(F+Ft+tr(F)I)—r3—5 (r'Fr) I] r.
£ £

De Goes and James 2017/
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e Context definition

# Surface Fairing
v: fairing

Surface fairing given boundary constraints depends on the order of the Laplacian. A
simple ="def"-graph Laplacian $L$ can be written in terms of the
adjacency matrix $A$ and the ="def"-degree matrix $D$% . Those

matrices can be derived purely from the ="def"-the edges of the mesh
$ES

We then solve a system of equations $Lx = 0% for free vertices to obtain the fair
surface. We can write ="def">the fair mesh vertices $V'$ directly
given ="def">boundary constraints provided as a binary vector $B%$ with
1's for boundary vertices , a lLarge scalar ="def:w">constraint

weight ww=10A6*, and ="def">3D vertices for the constrained mesh
$V$
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="cylinder.html" ="a fair cylinder surface"
Fairing the middle half of a cylinder.
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0 otherwise
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Dii= ZAi,j @
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We then solve a system of equations Lz = 0 for free vertices to obtain the fair
surface. We can write the fair mesh vertices V. directly given boundary con-
straints provided as a binary vector B with 1’s for boundary vertices, a large
scalar constraint weight 3 = 105, and 3D vertices for the constrained mesh V:

V' = (L + wdiag (B)) ' (wdiag (B).Y) (2)
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A Symmetric Objective Function for ICP

SZYMON RUSINKIEWICZ, Princeton University

The Iterative Closest Point (ICP) algorithm, commonly used for alignment of 3D mod-
els, has previously been defined using either a point-to-point or point-to-plane objec-
tive. Alternatively, researchers have proposed computationally-expensive methods
that directly minimize the distance function between surfaces. We introduce a new
symmetrized objective function that achieves the simplicity and computational effi-
ciency of point-to-plane optimization, while yielding improved convergence speed and
a wider convergence basin. In addition, we present a linearization of the objective that
is exact in the case of exact correspondences. We experimentally demonstrate the im-
proved speed and convergence basin of the symmetric objective, on both smooth mod-
els and challenging cases involving noise and partial overlap.

1 INTRODUCTION

Registration of 3D shapes is a key step in both 3D model creation (from scanners or
computer vision systems) and shape analysis. For rigid-body alignment based purely
on geometry (as opposed to RGB-D), the most common methods are based on variants
of the Iterative Closest Point (ICP) algorithm [Besl and McKay 1992] . In this method,
points are repeatedly selected from one model, their nearest points on the other model
(given the current best-estimate rigidbody alignment) are selected as correspondences,
and an incremental transformation is found that minimizes distances between point
pairs. The algorithm eventually converges to a local minimum of surface-to-surface
distance.

Because ICP-like algorithms can be made efficient and reliable, they have become
widely adopted. As a result, researchers have focused on both addressing the short-
comings of ICP and extending it to new settings such as color-based registration and
non-rigid alignment. One particular class of improvements has focused on the loss
function that is optimized to obtain an incremental transformation. For example, as
compared to the original work of Besl and McKay, which minimized point-to-point
distance, the method of [Chen and Medioni 1992] minimized the distance between a
point on one mesh and a plane containing the matching point and perpendicular to its
normal. This point-to-plane objective generally results in faster convergence to the
correct alignment and greater ultimate accuracy, though it does not necessarily in-
crease the basin of convergence. Work by [Fitzgibbon 2003], [Mitra et al. 2004], and
[Pottmann et al. 2006] showed that both point-to-point and point-to-plane minimiza-

tion may be thought of as approximations to minimizing the squared Euclidean dis-
tance finction of the snrface and thev nresented aloarithms that achieved oreater con-
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Glossary of ICP

p € R3: the averaged coordinate of points

g € R3: the averaged coordinate of points

Eplane € R: the point-to-plane objective

Epoint € R: the point-to-point objective

€symm—RN € R: the rotated-normals ("-RN") version of the
symmetric objective

Esymm € R: €symm as the symmetric objective

Etwo—plane € R: the sum of squared distances to planes de-
fined by both n, and n,

n, € sequence of R?: the surface normals

ng € sequence of R?: surface normals ng
’

R € R3*3: a rigid-body transformation (R|t) such that ap-
plying the transformation to P causes it to lie on top of

S e R¥4

a € R3: a and 0 are the axis and angle of rotation

n € sequence of R3

p € sequence of R3: pairs of corresponding points (p;, g;),
where ¢; is the closest point to p; given the current
transformation

p€ sequence of R?
g € sequence of R3: pairs of corresponding points (p;, ;).

where g; is the closest point to p; given the current
transformation

g€ sequence of R?

rot € R, R3 — R**% the rotation function

t € R%: a rigid-body transformation (R|t) such that apply-
ing the transformation to P causes it to lie on top of Q

trans € R® — R the translation function

te R3

acR?

6 € R: a and 6 are the axis and angle of rotation
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constancy eftects | Georgeson and Sullivan 1975].

The results of this experiment can be seen in Figure 4; for simplicity, the plotted data
have been averaged over the contrast dimension and participants. By comparing the
three plots, we note that frame rate has a powerful effect on mitigating judder, with re-
sults at 120 and 60Hz showing little perceived judder, while 30Hz stimuli were all per-
ceived with high levels of judder. A clear trend from the 30Hz plot is that, at this frame
rate, judder increases uniformly with luminance. In addition, speed has a nearly linear ef-

fect on perceived judder.

30 frames/second 60 frames/second 120 frames/second

® 2.5nit
8] N 8] 81 ® 10 nit
@ =" N @ @ ® 40 nit
g 6 S g e 2 6f
£ ¢ ¢ = £
3 6 R ke ¢ - 4 3
° 4 - T 4 - T 4]
3 ‘- --¢ 3 _-e-—" 2
TEHE HELLLE CLbL bl ' .
2 2 2f e e —— w——— R ’
L LR R FFFF EEL b
ol . . . 0 . . . . ol . . .
17 111 7 15 17 111 7 15 117 111 17 115
speed (pic/sec) speed (pic/sec) speed (pic/sec)

Fig. 4. Results for experiment 1 (moving edge), averaged over participants and contrasts.

Vertical lines depict standard error over all samples. Results for 120 (right) and 60 FPS
(mid) show little judder. Thirty FPS (left) appeared considerably distorted—judder in-
creases almost linearly with speed, and there is a neat separation between luminance
levels (plotted in red, green, and blue), with higher luminances considered to have more

judder.
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Fig. 5. Results for experiment 2 (panning complex images), averaged over participants
and images. Vertical lines depict standard error over all samples. Results are similar to
experiment 1, with 120 (right) and 60 FPS (mid) not showing much judder. Thirty FPS
(left) continues to present a positive and clearly separable correlation of judder with
speed and luminance.
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Glossary of judder

F, € R: Denoting F, and F}, as the two frame rates
Fy € R: Denoting F;, and Fj, as the two frame rates
L, € R: L, , L as the luminances

L, € R: L, , Ly as the luminances

CFF € R — R: the critical flicker fusion rate (CFF)
F € R: frame rate F

J € R: an easily expressible model of judder J

L € R: mean luminance L

M € R: a factor M

PeR,RR—R

S € R: speed S

a € R: a and b are known constants

b € R: a and b are known constants

a € R — R: a the logarithm function

B € R — R: Bis the multiplicative inverse
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approximate the surface around g; as planar, which only requires evaluation of surface
normals n,, . Indeed, this approach dates back to the work of [Chen and Medioni 1992],

who minimized what has come to be called the point-to-plane objective :

Eplane = Z ((sz + £ — Qz) . nqz)z (2)

7 /\

n, € sequence of R*: surface normals n
It can be shown that minimizing this minimiza-
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where g and @ are the axis and angle of rotation . We observe that the last term in (7) is
quadratic in the incremental rotation angle @, so we drop it to linearize:

Rv ~ vcosf+ (a x v)sinf (8)
= cosfA(v + (a x v))

where @ = gtan (€) . Substituting into (6),

Esymm ~ Z (cos (p; — qi) - mi +cos (a X (pi + ;) - ma + £ - M)

1
where n; = ng,+np, and £ = cos () We now make the additional approximation of

weighting the objective by 1/ cos?§ , which approaches 1 for small § . Finally, for better

and adjusting the solved-for translation appropriately. This yields:

S (B — @) - m+ (B + @) X m3) - d +ma -’ (10)

()

where p, = p; — p and ¢, = ¢; — ¢. This is a least-squares problem in @ and %, and the fi-
nal transformation from P to Q) is:

S = trans(q) - rot (.9 Cz ) - trams (fcos (Q)) - rot (.8 4 )-.tmn.s(—@) (11)

7l " all
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# K-Means

coNOYUT A WN =

In k-means clustering, we are given a sequence of data $x_i € RAm$. We want to cluster the data into $k €
7% clusters. First, we initialize the ="def">cluster centers $c_i € RAm$ arbitrarily.
Then we iteratively update cluster centers. The updated cluster centers are the points which minimize the
sum of squared distances to all ="def:y"-points $y_i$ which are closer to $c_i$ than any other
cluster $c_{j \neq i}$
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K-Means with $k=4%. Cluster centers are shown in black. Clusters are strongly affected by
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form, which then yields a linear least-squares system.

We instead pursue a linearization that starts with the Rodrigues
rotation formula for the effect of a rotation R on a vector v:

Rv=vcosf+(axv)sinf +a(a-v)(1-cosb), (7)

where a and @ are the axis and angle of rotation. We observe that
the last term in (7) is quadratic in the incremental rotation angle 0,
so we drop it to linearize:

Rv ~vcosf + (aXv)sinf
=cos @ (v + (axv)), (8)
where a@ = atan 0. Substituting into (6),
Esymm ~ Z [cosH(p,- —qi)-ni +
i

cos O (ax (pi +qi)) -ni + t-n,-]z
B ) .
l ((pi +qi)xni)-a+ n,--i]z, (9)

where n; = np i + ng,; and t = t/cosf. We now make the addi-
tional approximation of weighting the objective by 1/cos? 6, which
approaches 1 for small 0. Finally, for better numerical stability, we

H¥rtDown Paper Viewer

The traditional method for converting an objective function involving rotations into an
easily-optimized linear least-squares system is to make the approximations cos@ ~ 1,
sin@ ~ @, for small incremental rotations @. This converts the rotation matrix R into a
linear form, which then yields a linear least-squares system.

We instead pursue a linearization that starts with the Rodrigues rotation formula for the
effect of a rotation R on a vector v:

Rv=wvcosl + (a x v)sin@ + a(a - v)(1 — cosf) (7

where a and @ are the axis and angle of rotation . We observe that the last term in (7) is
quadratic in the incremental rotation angle @, so we drop it to linearize:

Rv ~ vcos@ + (a x v)sin@ (8)
=cosf(v+ (axv))

where d = atan (@) . Substituting into (6),

Eaymm = Z(Cosl?(p. Gi) - i+ cos@(a x (pi+ qi)) - mi + t-my)

Eaymm = »_ 08 (0)((mi— @) - mi+ ((pi+ @) xm) - @+ my- £

This equation has 7 symbols:

Egymm € R: €,ymm as the symmetric objective

n € sequence of R*

teR’

deR?

q € sequence of R pairs of corresponding points (p;, g;), where g; is the closest point
to py given the current transformation

0 € R: a and 0 are the axis and angle of rotation

p € sequence of R*: pairs of corresponding points (p;, ¢;), where g; is the closest point
to p; given the current transformation

where n; =n, +n, and { = We now make the additional approximation of

t
cos (6)°
weighting the objective by 1/ cos?# , which approaches 1 for small 8 . Finally, for better
numerical stability, we normalize the (p;,¢;) by translating each point set to the origin
and adjusting the solved-for translation appropriately. This yields:

31— @) e+ (B + @) x ) -a+mg -8 (10)

Glossary of ICP

P € R™ the averaged coordinate of points

§ € R¥: the averaged coordinate of points

Eplane € [R: the point-to-plane objective

Epoint € IR: the point-to-point objective

€ymm-rN € R: the rotated-normals (*-RN")
version of the symmetric objective

Egymm € R: €4y as the symmetric objective

Etwo-plane € R: the sum of squared distances
to planes defined by both n;, and n,

n, € sequence of R*: the surface normals

ny € sequence of R surface normals n,

R € R*?; a rigid-body transformation (R|t)
such that applying the transformation to
P causes it to lie on top of Q

B € Ru‘

a € R%: a and @ are the axis and angle of
rotation

n € sequence of R*

p € sequence of R pairs of corresponding
points (p;, g;), where g; is the closest point
to p; given the current transformation

P € sequence of R*

g € sequence of R®: pairs of corresponding
points (p;, ¢;), where g; is the closest point
to py givcn the current transformation

{ € sequence of R?

rot € R, R* — R4 the rotation function

t € R%: a rigid-body transformation (R|t)
such that applying the transformation to
P causes it to lie on top of Q

trans € R — RV the translation function

teRr?

aelR’

6 € R: a and @ are the axis and angle of
rotation




Expert Study



Expert Study

e 3 CS PnD students



Expert Study

e 3 CS PnD students

* Author an original document related to their computer graphics research



Expert Study

e 3 CS PnD students

* Author an original document related to their computer graphics research

Let’s say we have a hand made of five fingers and we want to know if it’s intersecting a
shape. Assume we can detect where the five fingertips intersect with the shape. And be-
low we will analyse the distance of fingertips to a cuboid.

Distance to Cuboid

3D position of endpoint of edge i . V; represents the 3D position of fingertip j . A is the
matrix storing the distance between fingertips to edges j . f represents the 3D position of
fingertip j .

if (pe; —psi) - (V;—ps;) >0
if (ps; — pe;) - (V; — pe;) > 0

otherwise

|V; — psill

s;, pes, Vi) = ¢ IIVi — peill
flesi pe; J) (pei—psi)-(Vi—psi)

|lpe;—ps:||

This equation has 4 symbols:

f € R%, R3R® — R: f represents the 3D position of fingertip j
ps; € R3: ps; is the start point of edge i

pei € R3: pe; represents the 3D position of endpoint of edge i
V; € R®: V] represents the 3D position of fingertip j

(1)

Glossary of HandToShapeDistance

A € Rimoxdimi; A jg the matrix storing the distance between
fingertips to edges j

V € sequence of R?: lists of position of five fingertips

V; € R3: V; represents the 3D position of fingertip j

f € R%R% R® — R: f represents the 3D position of fingertip
Uy

pe € sequence of R: lists of position of end points of line
segments

pe; € R3: pe; represents the 3D position of endpoint of edge i

ps € sequence of R?: lists of position of start points of line
segments

ps; € R3: ps; is the start point of edge 4

Vau — Vi Voo — Voo ) )2
E, licular \ V.3 Gy Oy Py = . 3
Bppenticner (1,0, 9 (’(uya,. . .Vb,.|) (u.v,,,. T~ ®)

energy.

Given a set of these functions and corresponding sets of positions given as indices into
an array V, € Rlnx3), we can find new positions via optimization:

t= min By (Vo, L) + Epar Vo, P) + Eper (Vo Q)

V,eRnx3

This equation has 8 symbols:

t € R: t is energy equals to the sum of Ey,,, E,, and Ej,,.

L € Z"*: L, P, Q are length, parallel and perpendicular indices.

P e ZP*%: L, P, Q are length, parallel and perpendicular indices.

E,., € R ZI%4 5 R: B, takes V,, L and sums all the length energy value.

Epr € Rn*3, Z9%4 5 R: E,., takes V,, Q and sums all the perpendicular energy value.
V, € R™3: V, is the subset of points to be optimized.

Q € Z9%: L, P, Q are length, parallel and perpendicular indices.

Egor € RV, 274 — R: E,, takes V,, P and sums all the parallel energy value.

where V, is the subset of points to be optimized. , Vo is the intial value of V. , L, P, @
are length, parallel and perpendicular indices. , and ¢ is energy equals to the sum of Ej,,

Since some vertices are fixed, function f is used to get the position of all vertices. In order
to conveniently get the positionfor each energy, we can use several helper functions to
index the full position matrix.

Bien (Vo, L) = 3 Etengen (f(Vo), Li, Liz Lig, Li) )

Epar (‘_’pa P) = Epumllgl (f(yl))x By, Pk?y P;3, P;A) (6)

where Ej,, takes V,, P and sums all the parallel energy value.

Epr (Vo, Q) = ZEpcrpendlndaf (f(Vo), @i, Qi2, Qis, Qiv) (7

(4)

Glossary of ScaffoldSketch

Eiength € R™*3, 2. Z,Z,Z - R: Ejengin takes in points V and
the index a, b, p, q returns length energy.

Ey., € R™3, 2 5 R: By, takes V,, L and sums all the
length energy value.

Eparatict € R™3,2,Z,2,Z — R: Epgpaue takes in points V
and the index a, b, p, g returns parallel energy.

Eper € R™3, 274 5 R: By, takes V,, P and sums all the
parallel energy value.

E}nrrprmlxmlur € R"”S,Z, Z,Z2,Z—-R: Ep,,-,,,,"d,m‘,,, takes in
points V and the index a, b, p, g returns perpendicular
energy.

E,.. € RV3, 294 5 R: E,,, takes V,, Q and sums all the
perpendicular energy value.

L € Z"% L, P, Q are length, parallel and perpendicular
indices.

P € ZP4: L, P, Q are length, parallel and perpendicular
indices.

Q € Z%4: L, P, Q are length, parallel and perpendicular
indices.

V € R™3. V is the points.

V, € R"*3: V, is the subset of points to be optimized.

Ve € R™3: Ve is the intial value of V.

a € Z: a, b, p, q are the indices.

b € Z: a, b, p, q are the indices.

fER™3 5 R™3: fmaps VoV,

m € Z: m is the number of points

p € Z: a, b, p, g are the indices.

q € Z: a, b, p, q are the indices.

t € R: t is energy equals to the sum of Ej.,, Ep,r and Ej,.,.

Bending Energy

Define bending energy Ej

E, = ; Z ; (Bi,l,l("zzn — &)’ + Biaa(ki - '-F.,h)z)

This equation has 7 symbols:

Ej € R: bending energy E;

Rg € R¥mo; &, and &, being rest curvature vectors

B € sequence of R**% B is the bending stiffness matrix
k) € R¥™; k; and K, being curvature vectors

K € R¥™: x; and K being curvature vectors

[ € sequence of R: [ is the voronoi length

& € R¥™o; &, and Ry being rest curvature vectors

where

Kbl ‘ (d-'h + .d'.’l)

K1 = 2
_ Kby (d;. + dl.)
- b (i;.+ dz:)
l{b. N (.d=ll + .‘{lx)
&= 2

(3)

b being curvature binormal , £b being rest curvature binormal , &3 and & being curva-

ture vectors , &; and Kz being rest curvature vectors , B is the bending stiffness matrix ,

which B; =

EA; [a? 0
4 [0 »?

Twisting Energy

Define twisting energy E,

] , Lis the voronoi length , and E is the Young’s modulus .

Glossary of energy

A € R%™; the area of the node cross-section A;

B € sequence of R**%: B is the bending stiffness matrix

E € R: E is the Young's modulus

E; € R: bending energy E;

E, € R: stretching energy E,

E; € R: twisting energy E,

G € R: G is the shear modulus

d=1 € sequence of R3: bar tilde d1 is bar d1 shifted left by one

d; € sequence of R%: bar tilde d2 is bar d2 shifted left by one

d, € sequence of R¥: rest orthogonal directors d; and d,

dy € sequence of R3: rest orthogonal directors dy and d;

& € sequence of R®: & being the rest edge length

[ € sequence of R: [ is the voronoi length

M € sequence of R: /m is the rest twist

kb € sequence of R*: kb being rest curvature binormal

&1 € R%™: &, and & being rest curvature vectors

K2 € R%™: &, and &, being rest curvature vectors

die sequence of R*: tilde d1 is d1 shifted left by one

d, € sequence of R?: tilde d2 is d2 shifted left by one

a € sequence of R: a; and b; as the two axies of the ellipse at
the i** segment

b € sequence of R: a; and b; as the two axies of the ellipse at
the i** segment

d; € sequence of R d; and d, are orthogonal directors of
every segment on the center-line

d, € sequence of R d; and d, are orthogonal directors of
every segment on the center-line

e € sequence of R%: e being the edge length

ks € R: k, is the stretching coefficient

m € sequence of R: m is the twist

B € R%mo; B, is the twisting modulus

K1 € R¥™: k; and K, being curvature vectors

Ko € R¥™o; k1 and K, being curvature vectors

sh € seauence of B3 kb being curvature binormal
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* Author an original document related to their computer graphics research

Let’s say we have a hand made of five fingers and we want to know if it’s intersecting a
shape. Assume we can detect where the five fingertips intersect with the shape. And be-

low we will analyse the distance of fingertips to a cuboid.

Distance to Cuboid

3D position of endpoint of edge i . V; represents the 3D position of fingertip j . A is the
matrix storing the distance between fingertips to edges j . f represents the 3D position of

fingertip 7 .

|V; — psill

F(psi, pe;, V) = { IV — peill

(pei—psi)-(Vi—psi)

llpei—psi|

This equation has 4 symbols:

if (pe; —ps;) - (V;—

if (ps; —pe;) - (V;—
otherwise

f € R%, R3R® — R: f represents the 3D position of fingertip j

ps; € R3: ps; is the start point of edge i

pei € R3: pe; represents the 3D position of endpoint of edge i
V; € R3: V] represents the 3D position of fingertip j

(1)

Glossary of HandToShapeDistance

A € Réimoxdimi; A is the matrix storing the distance between
fingertips to edges j

V € sequence of R?: lists of position of five fingertips

V; € R3: V; represents the 3D position of fingertip j

f € R%R% R® — R: f represents the 3D position of fingertip
Uy

pe € sequence of R?: lists of position of end points of line
segments

pe; € R3: pe; represents the 3D position of endpoint of edge i

ps € sequence of R?: lists of position of start points of line
segments

ps; € R3: ps; is the start point of edge

Vi — Vi Voo — Voo ) )2
E, ndicular Y.y Gy 0, P, = " . 3
Bemetiote (V5,089 (‘(H.VQ,.—.%_. ) (u.v,,,.—.vv_.n ®)

where Eperpendicular takes in points V. and the index g, b, p, ¢ returns perpendicular
energy.

Given a set of these functions and corresponding sets of positions given as indices into
an array V, € Rlnx3), we can find new positions via optimization:

t= min Elen(VmL)"'E F(%vP)+Eper(K7r Q) (4)

V,eRn<3

This equation has 8 symbols:

t € R: t is energy equals to the sum of Ey,,, E,,, and E,,.,.

L € Z"*: L, P, Q are length, parallel and perpendicular indices.

P e ZP*%: L, P, Q are length, parallel and perpendicular indices.

E,., € R ZI%4 5 R: B, takes V,, L and sums all the length energy value.

E,., € RV3, 294 5 R: E,,, takes V,, Q and sums all the perpendicular energy value.
V, € R™3: V, is the subset of points to be optimized.

Q € Z9*: L, P, Q are length, parallel and perpendicular indices.

Egor € RV, 274 — R: E,, takes V,, P and sums all the parallel energy value.

where V, is the subset of points to be optimized. , Vo is the intial value of V. , L, P, @
are length, parallel and perpendicular indices. , and ¢ is energy equals to the sum of Ej.,
Epor and E.. .

Since some vertices are fixed, function f is used to get the position of all vertices. In order

to conveniently get the positionfor each energy, we can use several helper functions to
index the full position matrix.

Bien (Vo, L) = 3 Etengen (f(Vo), Li, Liz Lig, Li) 5)

where f maps V to V,, and Ej,, takes V,, L and sums all the length energy value.

EPG" (VDs P) = Z Epurallcl (f(vo)x Px.lv Pu?y P._g, Pl,4) (6)

where Ej,, takes V,, P and sums all the parallel energy value.

Epr (Vo Q) = Z Eperpendicutar (f(Vo), @i, @i2, @iz, Qia) )

Glossary of ScaffoldSketch

Elength € R™3,Z, 7, Z, 7 — R: Epengy, takes in points V and
the index a, b, p, g returns length energy.

Ey., € R™3, 2 5 R: By, takes V,, L and sums all the
length energy value.

Eparaliet € R™3,Z,Z,Z,7Z — R: Epsraue takes in points V
and the index a, b, p, g returns parallel energy.

Eper € R™3, 274 5 R: By, takes V,, P and sums all the
parallel energy value.

Eperpendicutar € R™3,Z,Z,Z,Z - R: Eperpendicular takes in
points V and the index a, b, p, ¢ returns perpendicular
energy.

Eper € RV, 294 5 R: E,,., takes V,, Q and sums all the
perpendicular energy value.

L € Z"% L, P, Q are length, parallel and perpendicular
indices.

P € ZP4: L, P, Q are length, parallel and perpendicular
indices.

Q € Z%4: L, P, Q are length, parallel and perpendicular
indices.

V € R™3. V is the points.

V, € R™3: V, is the subset of points to be optimized.

Ve € R™3: Ve is the intial value of V.

a € Z: a, b, p, q are the indices.

b € Z: a, b, p, q are the indices.

fER™3 5 R™3: fmaps VoV,

m € Z: m is the number of points

p € Z: a, b, p, q are the indices.

q € Z: a, b, p, q are the indices.

t € R: t is energy equals to the sum of Ej.,, Ep,r and Ej,.,.

Bending Energy

Define bending energy Ej

1 1
B, = 2 z L (3;,1,1('92- ~ )" + Biaa(mi - '_?..1.)2) (2)

This equation has 7 symbols:

Ej € R: bending energy E;

Ry € R¥™o; &, and &, being rest curvature vectors

B € sequence of R**% B is the bending stiffness matrix
Ky € R%™; k) and Kk, being curvature vectors

K € R¥™: x; and K being curvature vectors

I € sequence of R: [ is the voronoi length

& € R¥™o; &, and Ry being rest curvature vectors

where

Kb ( .1. + dl,)
e ®
~ £ (;2- + _2-)
Ky — 2
_b. .d:lx + dlx)
8i=- 2

b being curvature binormal , sb being rest curvature binormal , & and &, being curva-
ture vectors , & and & being rest curvature vectors , B is the bending stiffness matrix ,

i[a? 0] -
which B; = Ef [alo B2 ] , L is the voronoi length , and E is the Young’s modulus .

Twisting Energy

Define twisting energy E;

Glossary of energy

A € R%m; the area of the node cross-section A;

B € sequence of R***: B is the bending stiffness matrix

E € R: E is the Young's modulus

E; € R: bending energy E;

E, € R: stretching energy E,

E; € R: twisting energy E,;

G € R: G is the shear modulus

d; € sequence of R%: bar tilde d1 is bar d1 shifted left by one

dy € sequence of R3: bar tilde d2 is bar d2 shifted left by one

d; € sequence of R*: rest orthogonal directors d and d,

d; € sequence of R*: rest orthogonal directors d and d,

& € sequence of R®: € being the rest edge length

[ € sequence of R: [ is the voronoi length

M € sequence of R: /m is the rest twist

kb € sequence of R*: kb being rest curvature binormal

&1 € R%™: &, and & being rest curvature vectors

K2 € R%™: &, and &, being rest curvature vectors

di e sequence of R3: tilde d1 is d1 shifted left by one

d, € sequence of R?: tilde d2 is d2 shifted left by one

a € sequence of R: a; and b; as the two axies of the ellipse at
the i** segment

b € sequence of R: a; and b; as the two axies of the ellipse at
the i** segment

d; € sequence of R d; and d, are orthogonal directors of
every segment on the center-line

d, € sequence of R®: d; and d, are orthogonal directors of
every segment on the center-line

e € sequence of R%: e being the edge length

ks € R: k, is the stretching coefficient

m € sequence of R: m is the twist

B € R%mo; B, is the twisting modulus

K1 € R¥™: k; and K, being curvature vectors

Ko € R¥™o; k1 and K, being curvature vectors

h'€ seanence af R kb heing curvature hinormal

» Spent 24, 7, and 6 hours, respectively, using H®rtDown over a period

of two weeks



Expert Study: Observations and Conclusions

Bending Energy

Define bending energy Ej
1 1 _ N2 _
By= 5 T. (Bi,l,l(!?.zz' — B2:)” + Bip2(k1: — Bai) )

This equation has 7 symbols:

Ey € R: bending energy E

Ky € R%™o: g, and R, being rest curvature vectors

B € sequence of R?*2: B is the bending stiffness matrix
K1 € R¥™: kg, and Kk being curvature vectors

Ky € R¥™: kg, and Ky being curvature vectors

| € sequence of R: [ is the voronoi length

k1 € R¥™: g and R being rest curvature vectors

where

K1, — 9
K«bz (le + dlz)
Klbz (de + de)
ﬁtbz (d:lz + dlz)
Kai = — 9

&b being curvature binormal , £b being rest curvature binormal , &; and k3 being curva-
ture vectors , K; and K3 being rest curvature vectors , B is the bending stiffness matrix ,

. [n2
which B; = kA, [’a’ 0

4 b2

] , | is the voronoi length , and K is the Young’s modulus .

Twisting Energy

(2)

Glossary of energy

A € R%™; the area of the node cross-section 4;

B € sequence of R?*% B is the bending stiffness matrix
E € R: E is the Young's modulus

E, € R: bending energy E,

E; € R: stretching energy E,

E; € R: twisting energy E;

G € R: G is the shear modulus

di € sequence of R?: bar tilde d1 is bar d1 shifted left by one

dy € sequence of R®: bar tilde d2 is bar d2 shifted left by one
d; € sequence of R3: rest orthogonal directors d; and d

dy € sequence of R3: rest orthogonal directors d; and dy

& € sequence of R3: & being the rest edge length

[ € sequence of R: [ is the voronoi length

m € sequence of R: 7 is the rest twist

kb € sequence of R*: kb being rest curvature binormal

K1 € R¥™: k1 and K being rest curvature vectors

K2 € R¥™: k1 and K being rest curvature vectors

d; € sequence of R: tilde d1 is d1 shifted left by one

dy € sequence of R?: tilde d2 is d2 shifted left by one

a € sequence of R: a; and b; as the two axies of the ellipse at
the i*" segment

b € sequence of R: a; and b; as the two axies of the ellipse at
the i*" segment

d; € sequence of R3: d; and d, are orthogonal directors of
every segment on the center-line

dy € sequence of R3: d; and d, are orthogonal directors of
every segment on the center-line

e € sequence of R%: e being the edge length

ks € R: k; is the stretching coefficient

m € sequence of R: m is the twist

B € R%mo: B; is the twisting modulus

k1 € R¥™o: g, and ky being curvature vectors

Ky € R%¥™: kg, and ky being curvature vectors

kb € seauence of R3: kb being curvature binormal




Expert Study: Observations and Conclusions

Bending Energy

Define bending energy Ej
1 1 —\2 _
Ey, = 0 T. (B-z',l,l(!?.zz' — R2:)" + Bi2o(K1; — R1j) )

"HYrtDown is an excellent

tool to share tutonalls] online —
it highlights the vector
dimension and variable
meaning...following all the
vectors/matrices/their aims is s
the hardest part of S
reoroducing a paper” P P p—

This equation has 7 symbols:

Ey € R: bending energy E

Ky € R%™o: g, and R, being rest curvature vectors

B € sequence of R?*2: B is the bending stiffness matrix
K1 € R¥™: kg, and Ky being curvature vectors

Ky € R%™: kg, and ky being curvature vectors

| € sequence of R: [ is the voronoi length

k1 € R%™: g1 and R being rest curvature vectors

where

ture vectors , K; and K3 being rest curvature vectors , B is the bending stiffness matrix ,

. a2
which B; = kA, [’g" 0
4 b2

1 , | is the voronoi length , and K is the Young’s modulus .

Twisting Energy

Define twisting energy

Glossary of energy

A € R%™; the area of the node cross-section 4;

B € sequence of R?*% B is the bending stiffness matrix
E € R: E is the Young's modulus

E, € R: bending energy E,

E; € R: stretching energy E,

E; € R: twisting energy E;

G € R: G is the shear modulus

di € sequence of R®: bar tilde d1 is bar d1 shifted left by one

d=2 € sequence of R3: bar tilde d2 is bar d2 shifted left by one
d; € sequence of R3: rest orthogonal directors d; and d
dy € sequence of R3: rest orthogonal directors d; and dy
& € sequence of R3: & being the rest edge length

[ € sequence of R: [ is the voronoi length

m € sequence of R: m is the rest twist

kb € sequence of R*: kb being rest curvature binormal
K1 € R¥™: k1 and K being rest curvature vectors

ko € R¥™0; £y and Ry being rest curvature vectors

d; € sequence of R: tilde d1 is d1 shifted left by one

dy € sequence of R?: tilde d2 is d2 shifted left by one

a € sequence of R: a; and b; as the two axies of the ellipse at
the i*" segment

b € sequence of R: a; and b; as the two axies of the ellipse at
the i*" segment

d; € sequence of R3: d; and d, are orthogonal directors of
every segment on the center-line

dy € sequence of R3: d; and d, are orthogonal directors of
every segment on the center-line

e € sequence of R%: e being the edge length

ks € R: k; is the stretching coefficient

m € sequence of R: m is the twist

B € R%mo: B; is the twisting modulus

k1 € R¥™: g, and Ky being curvature vectors

Ky € R%¥™: kg, and ky being curvature vectors

kb € seauence of R3: kb being curvature binormal
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Limitations

« H@'rtDown does not consider pseudocode or algorithmic steps
described In prose

Algorithm 1 A single simulation step of our proposed SPH-based
snow solver.

1: foreach particle i do

2 compute pg ; > see Subsection 3.3.2
3 compute L; > see Eq. (15)
4 compute a‘i)ther’t > e.g., gravity and adhesion
friction,z .
5.  computea; " > using Eq. (24)
6: SOLVE for a? > see Subsection 3.2.1 [G
, issler et al, 2020)
7: SOLVE for a? > see Subsection 3.2.2
8: foreach particle i do
9 integrate vi*Af = v + At(a?ther’t + agncnon’t +a? +af)
10: foreach particle i do
11: integrate FE ; > see Subsection 3.3.1

12: foreach particle i do
13:  integrate x!*A7 = x! + Arvith!




Limitations

« H@'rtDown does not consider pseudocode or algorithmic steps
described In prose

Algorithm 1 A single simulation step of our proposed SPH-based
snow solver.

1: foreach particle i do

2: compute pg ; > see Subsection 3.3.2

3: compute L; > see Eq. (15)

4:  compute a‘i)ther’t > e.g., gravity and adhesion

5. compute a?icnon’t > using Eq. (24)

6: SOLVE for a? > see Subsection 3.2.1 [GISS|@F eJ[ a| 2020]
7: SOLVE for a? > see Subsection 3.2.2 '

8: foreach particle i do
9: integrate vi*Af = v + At(a?ther’t + a?lcnon’t +a? +af)

10: foreach particle i do
11: integrate FE ; > see Subsection 3.3.1

12: foreach particle i do
13:  integrate x!*A7 = x! + Arvith!

* [he space of executable math and potential application domains
for H@rtDown is much broader than linear algebra
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Future Work

e Automatic conversion from LaTeX to H@rtDown

* A proof checker to verify derivations

* Callbacks and delegates for expanding the abillities of the generated
code

* Support for active reading (e.g. annotating and comparing)
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Conclusions

« H@rtDown is a low-overhead, ecologically compatible document
Processor

» H@rtDown supports authors and improves replicability, readability,
and experimentation

» Participants in our expert study found uses for HrtDown in their
research practice.
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