
H❤rtDown: Document Processor for
Executable Linear Algebra Papers

University of Toronto

Shoaib Kamil Alec Jacobson Yotam GingoldYong Li

Welcome to the talk, my name is Yong Li, I’m a PhD student in George Mason University.

We create a document processor called H❤ rtDown for executable linear algebra papers.

This is a joint work with

Dr. Shoaib Kamil from Adobe Research,

Prof. Alec Jacobson from University of Toronto and Adobe Research,

And my advisor Prof. Yotam Gingold from George Mason University.

H❤rtDown

H❤ rtDown is an environment for reading and writing scientific documents. Instead of writing formulas in latex, you write them in I❤ LA.

H❤ rtDown is an environment for reading and writing scientific documents. Instead of writing formulas in latex, you write them in I❤ LA.

By compiling the math, H❤ rtDown augments the paper with clickable definitions

By compiling the math, H❤ rtDown augments the paper with clickable definitions

and warns you when you’ve forgotten to describe a variable

The compiled math can be used to generate figures.

Updating the formula will change both the math output and the figure.

Outline

• Related work
• Function analysis
• H❤rtDown Design
• H❤rtDown Implementation
• Case studies
• Expert study
• Conclusion

Researching and disseminating scientific ideas relies on written communication

Outline

• Related work
• Function analysis
• H❤rtDown Design
• H❤rtDown Implementation
• Case studies
• Expert study
• Conclusion

Researching and disseminating scientific ideas relies on written communication

Related Work: Literate programming environments

• Literate Programming [Knuth 1984]

• Markdown [Gruber and Swartz 2004]

• Notebooks [Arnon 1988; Kery et al. 2018;

Rule et al. 2018; Wolfram 1988]

• Pluto [Plas 2020]

• Observable [Bostock 2017]

Observable

[Bostock 2017]

There are many Literate programming environments including Notebook, Pluto and Observable.

Some of these support prose-determined order. These duplicate math and code

The prose determines the order in which the pieces of the computer program are presented, rather than the order of execution required by the programming language.

Related Work: Reactive documents and publishing

• Idyll [Conlen and Heer 2018]

• Tangle [Victor 2011]

• ScholarPhi [Head et al. 2021]

• Distill [Team 2021]

• Authorea [Goodman et al. 2017]

• Nota [Crichton 2021]

• [Bonneel et al. 2020]

ScholarPhi

[Head et al. 2021]

Augmenting Scientific Papers with Just-in-Time,
Position-Sensitive Definitions of Terms and Symbols

Andrew Head
andrewhead@berkeley.edu

Kyle Lo
kylel@allenai.org

Dongyeop Kang
dongyeopk@berkeley.edu

Raymond Fok
rayfok@cs.washington.edu

UC Berkeley Allen Institute for AI UC Berkeley University of Washington

Sam Skjonsberg Daniel S. Weld Marti A. Hearst
sams@allenai.org danw@allenai.org hearst@berkeley.edu

Allen Institute for AI Allen Institute for AI UC Berkeley
University of Washington

ABSTRACT
Despite the central importance of research papers to scienti�c
progress, they can be di�cult to read. Comprehension is often
stymied when the information needed to understand a passage
resides somewhere else—in another section, or in another paper. In
this work, we envision how interfaces can bring de�nitions of tech-
nical terms and symbols to readers when and where they need them
most. We introduce ScholarPhi, an augmented reading interface
with four novel features: (1) tooltips that surface position-sensitive
de�nitions from elsewhere in a paper, (2) a �lter over the paper
that “declutters” it to reveal how the term or symbol is used across
the paper, (3) automatic equation diagrams that expose multiple
de�nitions in parallel, and (4) an automatically generated glossary
of important terms and symbols. A usability study showed that
the tool helps researchers of all experience levels read papers. Fur-
thermore, researchers were eager to have ScholarPhi’s de�nitions
available to support their everyday reading.

CCS CONCEPTS
• Human-centered computing ! Interactive systems and tools.

KEYWORDS
interactive documents, reading interfaces,scienti�c papers, de�ni-
tions, nonce words

ACM Reference Format:
Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg,
Daniel S. Weld, and Marti A. Hearst. 2021. Augmenting Scienti�c Papers
with Just-in-Time, Position-Sensitive De�nitions of Terms and Symbols. In
CHI Conference on Human Factors in Computing Systems (CHI ’21), May 8–13,
2021, Yokohama, Japan. ACM, New York, NY, USA, 18 pages. https://doi.org/
10.1145/3411764.3445648

1 INTRODUCTION
Researchers are charged with keeping on top of immense, rapidly-
changing literatures. Naturally, then, reading constitutes a major
part of a researcher’s everyday work. Senior researchers, such as

CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in CHI Conference
on Human Factors in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan,
https://doi.org/10.1145/3411764.3445648.

definition

nonce word
(the symbol "k")

hyperlink to definition
in�context

usage
count

buttons to open definition,
formula, and usage lists

Figure 1: ScholarPhi helps readers understand nonce words—
unique technical terms and symbols—de�ned within scien-
ti�c papers. When a reader comes across a nonce word that they
do not understand, ScholarPhi lets them click the word to view a
position-sensitive de�nition in a compact tooltip. The tooltip lets
the reader jump to the de�nition in context. It also lets them open
lists of prose de�nitions, de�ning formulae, and usages of the word.
ScholarPhi augments the reading experience with this and a host
of other features (see Section 4) to assist readers.

faculty members, spend over one hundred hours a year reading the
literature, consuming over one hundred papers annually [97]. And
despite the formidable background knowledge that a researcher
gains over the course of their career, they will still often �nd that
papers are prohibitively di�cult to read.

As they read, a researcher is constantly trying to �t the infor-
mation they �nd into schemas of their prior knowledge, but the
success of this assimilation is by no means guaranteed [7]. A re-
searcher may struggle to understand a paper due to gaps in their
own knowledge, or due to the intrinsic di�culty of reading a spe-
ci�c paper [7]. Reading is made all the more challenging by the
fact that scholars increasingly read selectively, looking for speci�c
information by skimming and scanning [34, 70, 98].

We are motivated by the question: Can a novel interface improve
the reading experience by reducing distractions that interrupt the
reading �ow? This work takes a measured step to address the gen-
eral design question by focusing on the speci�c case of helping
readers understand cryptic technical terms and symbols de�ned

Many approaches to reactive documents such as Idyll, Tangle and ScholarPhi have been proposed.

Some papers focus on authoring and publishing scientific articles such as Distill, Authorea and Nota.

In contrast, H❤ rtDown is focused on helping users correctly author, read, and experiment with mathematical formulas in scientific documents.

Related Work: Compilable math and augmentations

• Fortress [Allen et al. 2005]

• Lean [de Moura et al. 2015]

• Julia [Bezanson et al. 2017]

• I❤LA [Li et al. 2021]

• [Alcock and Wilkinson 2011]

• [Dragunov and Herlocker 2003]

• [Head et al. 2021, 2022]

• Penrose [Ye et al. 2020]

I❤LA example

Languages for Compilable Math include Fortress, Lean, Julia and I❤ LA. We can build H❤ rtDown on top of different languages here, we choose I❤ LA since it
resembles the equations in paper and can generate code for different backends.

Various math augmentations such as ScholarPhi and Penrose have been proposed to facilitate understanding mathematical notation in papers.

We use some of these augmentations in our viewer.

Outline

• Related work
• Formative Study
• H❤rtDown Design
• H❤rtDown Implementation
• Case studies
• Expert study
• Conclusion

We did a formative study for H❤ rtDown, before that

Design Goals

• Support authoring, reading, and making use of (experimenting with)

• Ecological compatibility

• Correct and reproducible documents
• Minimal authoring overhead

• Don’t change/restrict what authors put in papers (prose, math,
figures, tables)
• Minimal changes to how they write

• Plain text documents

We have two design goals.

The first is to support authoring, reading, and making use of (experimenting with)

Correct and reproducible documents

With Minimal authoring overhead

The second is to provide ecological compatibility which means

We don’t want to change/restrict what authors put in papers (prose, math, figures, tables)

And we want minimal changes to how they write, e.g.: We prefer plain text documents

156 SIGGRAPH 2020 papers

To inform our design, we thoroughly analyzed 156 papers from the SIGGRAPH North America 2020 Technical Papers, collecting both quantitative and qualitative
observations.

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

II. Math appears out of order. Symbols used before defined.

We found that

They all appear to be written using LaTeX.

Other Observations include

(I) Prose organizes the document. Mathematical expressions appear between paragraphs of prose or inline.

(II) Math symbols are often used before they are defined, as determined by the prose.

Equations in papers often depend on each other.

Math appears out of order [Wronski et al. 2019]

Let’s see a typical example from this paper. (# this paper is not from SIGGRAPH 2020, but it better demonstrates the dependence)

If we zoom in the six and seventh pages.

Math appears out of order [Wronski et al. 2019]

We can see that equation one defines a function C that uses w which is defined in the second equation, meanwhile, omega in the second equation is defined in the fourth
equation.

For each equation, there’s a prose block after the equation describing all the symbols in that equation

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

II. Math appears out of order. Symbols used before defined.
III. Symbols re-used in different contexts.

[Chapiro et al. 2019]

We also found that

(I) Symbols may be re-used, but the different context is clear to the reader.

For example, the M symbols have different meanings in these equations.

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

II. Math appears out of order. Symbols used before defined.
III. Symbols re-used in different contexts.
IV. Symbol appears in executable formulas and non-executable derivations.

[De Goes and James 2017]

(I) A symbol may appear in both derivations and executable formulas.

For example, the equation 12 is the derivation for the function u while equation 14 is implementable.

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

II. Math appears out of order. Symbols used before defined.
III. Symbols re-used in different contexts.
IV. Symbol appears in executable formulas and non-executable derivations.
V. Symbols and functions appear with conditional assignment.
VI. Functions have a variety of implied semantics for parameters and

pre-computed symbols.

(I) Symbols and functions may be defined via conditional assignment which is a simple form of control flow

(II) Functions make use of a variety of implied semantics for parameters and pre-computed symbols.

Quantitatively, we manually observed the 916 function definitions across the 156 SIGGRAPH papers.

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

We take an empiric approach to categorize these Equations.

Here is the overview of them.

96% use parentheses for parameters,

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Liu et al. 2020]

91% rely on implicit parameters,

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

Function’s suberscript  
as parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Lan et al. 2020]

[Liu et al. 2020]

17% interpret the function’s subscript as parameters,

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

Function’s suberscript  
as parameters

Unused parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Lan et al. 2020]

[Liu et al. 2020]

[Ma et al. 2020]

15% have seemingly unused parameters,

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

Function’s suberscript  
as parameters

Unused parameters

Defined via  
conditional assignment

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Lan et al. 2020]

[Liu et al. 2020]

[Ma et al. 2020]

[Kim et al. 2020]

6% are defined via conditional assignment

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

Function’s suberscript  
as parameters

Unused parameters

Defined via  
conditional assignment

Square brackets  
for parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Lan et al. 2020]

[Liu et al. 2020]

[Ma et al. 2020]

[Kim et al. 2020]

[Chiu et al. 2020]

4% use square brackets for parameters,

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

Function’s suberscript  
as parameters

Unused parameters

Defined via  
conditional assignment

Square brackets  
for parameters

Function’s superscript  
as parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Lan et al. 2020]

[Liu et al. 2020]

[Ma et al. 2020]

[Kim et al. 2020]

[Chiu et al. 2020]

[Lessig 2020]

2% interpret the function’s superscript as parameters,

Analysis of all 916 function definitions at SIGGRAPH 2020

Parentheses  
for parameters

Implicit parameters

Function’s suberscript  
as parameters

Unused parameters

Defined via  
conditional assignment

Square brackets  
for parameters

Function’s superscript  
as parameters

Parameter superscripts  
as additional parameters

0% 25% 50% 75% 100%

[Ni et al. 2020]

[Lan et al. 2020]

[Liu et al. 2020]

[Ma et al. 2020]

[Kim et al. 2020]

[Chiu et al. 2020]

[Lessig 2020]

[Jiang et al. 2020]

2% interpret the parameter superscripts as additional parameters,

Based on these findings, we extend the grammar and implementation of I❤ LA to include support for local functions

Formative Study

I. Prose organizes the document, interleaved with math.

• All appear to be written using LaTeX.
• Observations:

• Pseudocode sometimes present, compilable code isn’t. No literate programs.

II. Math appears out of order. Symbols used before defined.
III. Symbols re-used in different contexts.
IV. Symbol appears in executable formulas and non-executable derivations.
V. Symbols and functions appear with conditional assignment.
VI. Functions have a variety of implied semantics for parameters and

pre-computed symbols.

In addition, Pseudocode sometimes present while compilable code isn’t. There’s No literate programs.

Outline

• Related work
• Formative Study
• H❤rtDown Design
• H❤rtDown Implementation
• Case studies
• Expert study
• Conclusion

We design H❤ rtDown based on the previous formative study

H❤rtDown Design: Authoring

• Context definition

Just as in LaTeX or many other Markdown formats, the prose is written as plain text with occasional markup commands

Authors must declare a context for their symbols. This allows better symbol and formula re-use

Later context declarations override earlier declarations.

The context disambiguates symbol reuse (and corresponds to a concept of re-usable modules).

H❤rtDown Design: Authoring

• Prose descriptions

One appearance of a symbol in the prose deserves special attention: the text describing the symbol.

Detecting the span of this prose cannot be accurately automated, so we require authors to annotate such spans.

H❤rtDown Design: Authoring

• Executable mathematical expressions

Authors can write executable mathematical expressions in different I❤ LA blocks and inline I❤ LA formula

I❤ LA requires type declarations for all symbols not appearing on the left-hand side

H❤rtDown Design: Authoring

• I❤LA extensions

• Local function support

• Symbol def-use analysis

• Modules

• MathJax output includes metadata

Original I❤ LA can’t handle multiple equations in papers, we need to add new language features.

We add local function support based on the formative study.

In order to handle Math appearing out of order, we add symbol def-use analysis

We add Modules from another I❤ LA file to support different contexts

We also modify MathJax output to include the metadata

H❤rtDown Design: Authoring

• Figures

H❤ rtDown executes Python code blocks, which allows authors to generate figures programmatically

The Python code can access the compiled functionality of the document as a module.

Authors can also edit I❤ LA formulas and Python code for figures directly in the viewer-side of the authoring environment.

H❤rtDown Design: Author support

H❤ rtDown helps authors write correct math and complete prose.

Error messages appear whenever the user’s formulas contain incompatible indices, dimensions, types or erroneous syntax.

(*)The editor displays the I❤ LA compiler error message and highlights the appropriate line in the source.

H❤rtDown Design: Author support

When symbols are not described with prose, they(*) appear with red underlines in the viewer.

H❤rtDown Design: Reading Environment

H❤ rtDown’s paper reading environment provides several useful interactions that use the metadata.

We were inspired by ScholarPhi [Head et al. 2021] but aims to support all enhanced reader environments as a paper writing environment

H❤rtDown Design: Reading Environment

• Glossary

H❤ rtDown displays the glossary on the right side of the window in a fixed position as the page scrolls.

The glossary in H❤ rtDown is context-dependent: when the page scrolls to a different context, the glossary updates automatically with the relevant symbol list.

H❤rtDown Design: Reading Environment

• Symbol definitions

This figure shows the visualization we provide when clicking on the symbol in an equation

H❤rtDown Design: Reading Environment

• Equation relationships

When clicking an equation, H❤ rtDown highlights the terms involved in a symbol’s definition as well as downstream uses of the symbol.

H❤ rtDown solves a graph coloring problem using a greedy technique [Liu et al. 2021] to ensure symbols in the same equation have different colors.

H❤rtDown Design: Experimenter (making use of)

Here’s a clustering example.

We generate the output by compiling the source code.

The initial source code uses L1 norm to calculate the distance, we can change the math to use L2 norm which it's the more common norm.

H❤ rtDown will update both the math output and the figure that relies on the generated code library.

The new cluster centers have changed and are now heavily influenced by the outliers.

We can also click the figure to update the figure code, in this case, H❤ rtDown will only rerun the figure code.

The generated code libraries are saved into files and can be used outside of the H❤ rtDown reading/authoring environment.

We’ll show examples of that in our case studies

Outline

• Related work
• Formative Study
• H❤rtDown Design
• H❤rtDown Implementation
• Case studies
• Expert study
• Conclusion

For the implementation of H❤ rtDown

Implementation

The figure shows the overall structure

(of the implementation of H❤ rtDown)

Implementation

The web-based authoring GUI displays the editable input source and output paper reading environment side by side, leveraging an embeddable code editor

Implementation

The web-based authoring GUI displays the editable input source and output paper reading environment side by side, leveraging an embeddable code editor

Implementation: Web-based Editor

• Side-by-side source editor and output reading environment

• Communicates via POST requests with a Python-based Tornado server

• Caches I❤LA code and only re-compiles when necessary

The web-based authoring GUI displays the editable input source and output paper reading environment side by side, leveraging an embeddable code editor

The GUI communicates via POST requests with a server running the Python-based Tornado web framework and asynchronous networking library to run the H❤ rtDown
document processing

To speed compilation, H❤ rtDown caches I❤ LA code and only re-compiles it when the I❤ LA code has changed (determined via string comparison)

When a figure’s code is changed from the viewer, H❤ rtDown only runs that Python code block

Implementation

We implemented H❤ rtDown as an extension to Python Markdown,

Implementation

We implemented H❤ rtDown as an extension to Python Markdown,

Implementation

We implemented H❤ rtDown as an extension to Python Markdown,

Implementation: Python Markdown Extension

We implemented H❤ rtDown as an extension to Python Markdown. (Given an input Markdown source file, H❤ rtDown first parses all the context declarations(*). These

are used to infer each symbol’s scope, so that the prose annotations in the MathJax LaTeX output, the span tags around symbol definitions in prose, and I❤ LA can all

omit specifying the context. Then H❤ rtDown concatenates all I❤ LA code from the same context and compiles it(*) into both executable code for the libraries and

MathJax. H❤ rtDown then(*) searches for each symbol in the user’s LaTeX derivations and applies the LaTeX command used by our MathJax extension so that derivation
symbols can be queried uniformly.

(*)If the source contains figure code, H❤ rtDown extension will extract them in the end.)(*)

We added support for inline mathematical expressions by enclosing them in $ (a single-line change)

We modified an bibliography extension to resemble the SIGGRAPH bibliography style.

We also used Pandoc-style YAML headers to specify metadata

Implementation: Python Markdown Extension

We implemented H❤ rtDown as an extension to Python Markdown. (Given an input Markdown source file, H❤ rtDown first parses all the context declarations(*). These

are used to infer each symbol’s scope, so that the prose annotations in the MathJax LaTeX output, the span tags around symbol definitions in prose, and I❤ LA can all

omit specifying the context. Then H❤ rtDown concatenates all I❤ LA code from the same context and compiles it(*) into both executable code for the libraries and

MathJax. H❤ rtDown then(*) searches for each symbol in the user’s LaTeX derivations and applies the LaTeX command used by our MathJax extension so that derivation
symbols can be queried uniformly.

(*)If the source contains figure code, H❤ rtDown extension will extract them in the end.)(*)

We added support for inline mathematical expressions by enclosing them in $ (a single-line change)

We modified an bibliography extension to resemble the SIGGRAPH bibliography style.

We also used Pandoc-style YAML headers to specify metadata

Implementation: Python Markdown Extension

We implemented H❤ rtDown as an extension to Python Markdown. (Given an input Markdown source file, H❤ rtDown first parses all the context declarations(*). These

are used to infer each symbol’s scope, so that the prose annotations in the MathJax LaTeX output, the span tags around symbol definitions in prose, and I❤ LA can all

omit specifying the context. Then H❤ rtDown concatenates all I❤ LA code from the same context and compiles it(*) into both executable code for the libraries and

MathJax. H❤ rtDown then(*) searches for each symbol in the user’s LaTeX derivations and applies the LaTeX command used by our MathJax extension so that derivation
symbols can be queried uniformly.

(*)If the source contains figure code, H❤ rtDown extension will extract them in the end.)(*)

We added support for inline mathematical expressions by enclosing them in $ (a single-line change)

We modified an bibliography extension to resemble the SIGGRAPH bibliography style.

We also used Pandoc-style YAML headers to specify metadata

Implementation: Python Markdown Extension

We implemented H❤ rtDown as an extension to Python Markdown. (Given an input Markdown source file, H❤ rtDown first parses all the context declarations(*). These

are used to infer each symbol’s scope, so that the prose annotations in the MathJax LaTeX output, the span tags around symbol definitions in prose, and I❤ LA can all

omit specifying the context. Then H❤ rtDown concatenates all I❤ LA code from the same context and compiles it(*) into both executable code for the libraries and

MathJax. H❤ rtDown then(*) searches for each symbol in the user’s LaTeX derivations and applies the LaTeX command used by our MathJax extension so that derivation
symbols can be queried uniformly.

(*)If the source contains figure code, H❤ rtDown extension will extract them in the end.)(*)

We added support for inline mathematical expressions by enclosing them in $ (a single-line change)

We modified an bibliography extension to resemble the SIGGRAPH bibliography style.

We also used Pandoc-style YAML headers to specify metadata

Implementation: Python Markdown Extension

• Inline mathematical expressions enclosed by $

• SIGGRAPH bibliography style
• Pandoc-style YAML header for metadata

We implemented H❤ rtDown as an extension to Python Markdown. (Given an input Markdown source file, H❤ rtDown first parses all the context declarations(*). These

are used to infer each symbol’s scope, so that the prose annotations in the MathJax LaTeX output, the span tags around symbol definitions in prose, and I❤ LA can all

omit specifying the context. Then H❤ rtDown concatenates all I❤ LA code from the same context and compiles it(*) into both executable code for the libraries and

MathJax. H❤ rtDown then(*) searches for each symbol in the user’s LaTeX derivations and applies the LaTeX command used by our MathJax extension so that derivation
symbols can be queried uniformly.

(*)If the source contains figure code, H❤ rtDown extension will extract them in the end.)(*)

We added support for inline mathematical expressions by enclosing them in $ (a single-line change)

We modified an bibliography extension to resemble the SIGGRAPH bibliography style.

We also used Pandoc-style YAML headers to specify metadata

Implementation: Reading Environment

• HTML for document reflow

• SVG arrows for math augmentation

• JSON output by the H❤rtDown extension to visualize symbol
relationships

• MathJax extensions store information for symbols and equations

The paper reading environment uses html for document-reflow

SVG arrows for math augmentations

JSON output by the H❤ rtDown extension to visualize symbol relationships and enhance the paper reading experience.

We leverage MathJax extensions to store information for symbols and equations in the HTML tags generated by MathJax when displaying LaTeX math. This allowed us to
access the symbols in a structured way from JavaScript, which implements the dynamic, interactive aspects of our reading environment, and styles the symbols using
CSS.

Outline

• Related work
• Formative Study
• H❤rtDown Design
• H❤rtDown Implementation
• Case studies
• Expert study
• Conclusion

We converted a variety of SIGGRAPH papers and paper sections to H❤ rtDown.

H❤rtDown Case Studies

Our criteria for selecting papers were that they use linear algebra implementable by I❤ LA

The papers are from the past five years (2017–2021) of SIGGRAPH and span geometry processing, image processing, visualization, simulation, and rendering.

It include 5 full papers and 9 papers for which we implemented single subsections

H❤rtDown Case Studies

Out of the 14 papers we reimplemented, we only found code online for 7 of them. Among these, 4 are from the paper authors and 3 are third-party implementations.

Papers with an asterisk(*) had implementations available. The right-most column displays the total number of I❤ LA equation lines(*) and, in parentheses, the number of I

❤ LA blocks(*) and the number of inline I❤ LA formulas(*).

We use the library generated by H❤ rtDown to replace functions in the original code for each of these 7 examples, and use input examples to verify that the results
match.

H❤rtDown Case Studies

Each example in our evaluation include the H❤ rtDown source file, H❤ rtDown’s generated paper reading environment, and H❤ rtDown’s generated code library for C+
+, Python and MATLAB.

We also provide a link to the original paper for comparison and side-by-side screenshots.

Outline

• Related work
• Formative Study
• H❤rtDown Design
• H❤rtDown Implementation
• Case studies
• Expert study
• Conclusion

We conducted an expert study to understand how active researchers can make use of H❤ rtDown and the executable code it generates.

Expert Study

• 3 CS PhD students

• Author an original document related to their computer graphics research

• Spent a total of 24, 7, and 6 hours, respectively, using H❤rtDown over
a period of two weeks

We recruited 3 computer science PhD students

In our experiment, participants were given initial and follow-up questionnaires to understand their current practices and share their thoughts about H❤ rtDown.

They spent a total of 24, 7, and 6 hours, respectively, using H❤ rtDown over a period of two weeks.

For the tasks in our expert study,

Expert Study: Expert 1

The first expert wrote a function with conditionals to calculate the distance from hand to shape in 3D.

Expert Study: Expert 2

The second expert solved an optimization problem for 3D snapping

The objective function is divided into three sub-functions.

Expert Study: Expert 3

The third expert wrote a tutorial for discrete elastic rods.

The energy functions were written separately, some relied on variables defined in the inline I❤ LA block.

The tutorial written by this expert became a dynamically annotated document generating with canonical executability available in multiple programming environments.

This tutorial is now more readable due to math augmentations and can be used in addition to read since it self-generates code in any programming languages I❤ LA
supports

Expert Study: Observations and Conclusions

• Two participants appreciated that writing in H❤rtDown is similar to
writing Markdown

• Two commented that writing math in I❤LA is harder than with
Markdown/LaTeX

• One commented that the generated code compensates for the
additional time spent writing the equations

• All participants liked the dynamic reader features

At the conclusion of the study, we sent participants a follow-up questionnaire.

Two participants appreciated that writing in H❤ rtDown is similar to writing Markdown

Two commented that writing math in I❤ LA is harder than with Markdown/LaTeX

One commented that the generated code compensates for the additional time spent writing the equations.

All participants liked the dynamic reader features

Expert Study: Observations and Conclusions

 
“H❤rtDown is an excellent tool to share tutorial[s] online—it highlights the
vector dimension and variable meaning...following all the vectors/matrices/
their dims is the hardest part of reproducing a paper.”

One user said.

H❤ rtDown is an excellent tool to share tutorial[s] online—it highlights the vector dimension and variable meaning...following all the vectors/matrices/their dims is the
hardest part of reproducing a paper.

Expert Study: Observations and Conclusions

• I❤LA language limitations (e.g. summation ranges)

• We fixed the cosmetic usability problems raised by the participants

• User feedback guides development efforts

Most of the limitations they encountered were due to I❤ LA language limitations, such as limitations around summation ranges.

We fixed the cosmetic usability problems raised by the participants like stale information being shown when an error occurs.

We plan to address limitations in I❤ LA functionality. Since our goal is for H❤ rtDown to be adopted by researchers, user feedback will guide development efforts.

Outline

• Related work
• Formative Study
• H❤rtDown Design
• H❤rtDown Implementation
• Case studies
• Expert study
• Conclusion

We have demonstrated that H❤ rtDown is a useful compatible document processor.

Limitations

• H❤rtDown does not consider pseudocode or algorithmic steps
described in prose

• The space of executable math and potential application domains
for H❤rtDown is much broader than linear algebra

[Gissler et al. 2020]

One limitation of H❤ rtDown is that it does not consider pseudocode, literate programming, or algorithmic steps described in prose. Algorithms are often needed to
make formulas useful.

Another limitation stems from the kinds of formulas that our extended version of I❤ LA can handle.

Future Work

• Automatic or semi-automatic conversion from LaTeX to H❤rtDown

• Incorporating a proof checker could allow verification of derivations

• Explore callbacks and delegates for expanding the abilities of the
generated code

• Improve our reading environment to support active reading activities
such as annotating and comparing

In future, we also plan to,

Support Automatic or semi-automatic conversion from LaTeX to H❤ rtDown

Incorporating a proof checker could allow the verification of derivations

Explore callbacks and delegates for expanding the abilities of the generated code

Improve our reading environment to support active reading activities such as annotating and comparing

Conclusions

• H❤rtDown is a low-overhead, ecologically compatible document
processor

• H❤rtDown supports authors and improves replicability, readability,
and experimentation

• Participants in our expert study found uses for H❤rtDown in their
research practice.

In conclusion,

H❤ rtDown is a low-overhead, ecologically compatible document processor

H❤ rtDown supports authors and improves replicability, readability, and experimentation

Participants In our expert study found uses for H❤ rtDown in their research practice.

Acknowledgments

• Anonymous reviewers for their suggestions

• Seth Walker for helping design the reader environment

• Zoya Bylinskii for a discussion on related research projects

• Zhecheng Wang, Xue Yu and Jialin Huang for additional feedback

• Sponsors:

• Canada Research Chairs Program

• Sloan Foundation

• Adobe Inc.

I’d like to thank

Anonymous reviewers for their suggestions

Seth Walker for helping design the reader environment

Zoya Bylinskii for a discussion on related research projects

Zhecheng Wang, Xue Yu and Jialin Huang for additional feedback

The research is supported by Canada Research Chairs Program, Sloan Foundation and Adobe

H❤rtDown
https://iheartla.github.io/heartdown/

H❤ rtDown can be used at all stages of research

(from experimenting with the seed of an idea, to writing the final paper)

Thanks for listening!

Please try our language.

You are welcome to contact us in the future.

