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Abstract
In example-based inverse linear blend skinning (LBS), a collection of poses (e.g., animation frames) are given, and the goal is
finding skinning weights and transformation matrices that closely reproduce the input. These poses may come from physical
simulation, direct mesh editing, motion capture, or another deformation rig. We provide a re-formulation of inverse skinning as a
problem in high-dimensional Euclidean space. The transformation matrices applied to a vertex across all poses can be thought
of as a point in high dimensions. We cast the inverse LBS problem as one of finding a tight-fitting simplex around these points (a
well-studied problem in hyperspectral imaging). Although we do not observe transformation matrices directly, the 3D position of
a vertex across all of its poses defines an affine subspace, or flat. We solve a “closest flat” optimization problem to find points on
these flats, and then compute a minimum-volume enclosing simplex whose vertices are the transformation matrices and whose
barycentric coordinates are the skinning weights. We are able to create LBS rigs with state-of-the-art reconstruction error, and
state-of-the-art compression ratios for mesh animation sequences. Our solution does not consider weight sparsity or the rigidity
of recovered transformations. We include observations and insights into the closest flat problem. Its ideal solution, and optimal
LBS reconstruction error, remain an open problem.
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1. Introduction

Linear blend skinning (LBS) is one of the most widely used tech-
niques for animation and deformation due to its simplicity and
efficiency. The deformed position of a vertex is determined by the
weighted average of a set of transformations Tj:

v′i =
h

∑
j=1

wi, jTjvi (1)

where {wi, j} are the skinning weights, {Tj} is the set of h affine
transformation matrices, and vi is the undeformed position of the
i-th vertex (with the homogeneous coordinate = 1). The skinning
weights for each vertex are typically non-negative (wi, j ≥ 0) and
sum-to-one (∑h

j=1 wi, j = 1). During animation, only the transfor-
mation matrices change. This reduces the amount of information
needed for creating and editing. Conceptually, the transformations
serve as the handles and may represent the “bones” of a character.
The weights and transformations of a model are often called its rig.
See [JDKL14] for a recent survey.

Given the utility and ubiquity of LBS, it is desirable to obtain
an LBS rig given only a set of observed deformations. The ob-
servations may come from physical simulation, direct mesh edit-
ing, motion capture, or another deformation rig. In this example-

based inverse skinning problem, the desired output is a set of trans-
formation matrices, skinning weights, and possibly also the rest
pose mesh itself. In the most challenging version of this prob-
lem, the observations come in the form of uncorrelated point
clouds [CZ11, LCY∗18]. Often a set of meshes with corresponded
vertices are given [JT05, KSO10, LD12], and the problem is to find
a corresponding LBS rig. In other words, given a set of deformed
poses (vertices v′p,i), find the rig (wi, j,Tp, j) and possibly also the
undeformed positions vi. Inverse LBS can be formulated as a con-
strained least squares problem [JDKL14]:

min
w,R,t,v

#poses

∑
p=1

n

∑
i=1

∥∥∥∥∥v′p,i−
h

∑
j=1

wi, jTp, jvi

∥∥∥∥∥
2

(2)

subject to:

wi, j ≥ 0 and
h

∑
j=1

wi, j = 1 (3)

The constraints in Eq. 3 are convex combination constraints on the
skinning weights that ensure the blended transformations interpolate
the handle transformations. Two additional optional constraints are
per-vertex weight sparsity (‖w‖0 ≤ K) and rigid handle transfor-
mations (Tj ∈ SE(3)). In this work, our assumptions are that an

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0003-4846-8932
https://orcid.org/0000-0002-9862-2654
https://orcid.org/0000-0002-0452-8676
https://orcid.org/0000-0002-5381-2104


S. Liu & J. Tan & Z. Deng & Y. Gingold / Hyperspectral Inverse Skinning

T3

T4

T1

T2

... P poses

∑wjTj

T1,1

T1,2

T1,P

T2,1

T2,2

T2,P

T3,1

T3,2

T3,P

T4,1

T4,2

T4,P

Figure 1: Transformation matrices as points in R3·4·#poses. Given
several poses (e.g., animation frames) of a linear blend skinned
model (right), each bone’s transformation matrices across all poses
are vertices of a simplex in R3·4·#poses (left). Any vertex’s transfor-
mation (red circle) is the weighted sum of the bone transformations.
The weights wi of the LBS rig are the barycentric coordinates with
respect to the simplex.

undeformed mesh is given with vertex correspondences between the
undeformed mesh and deformed poses. We do not consider weight
sparsity or transformation rigidity.

Our key contribution is a re-formulation of inverse skinning as
a problem in high-dimensional space. The transformation matri-
ces applied to a mesh vertex vi across all poses can be thought of
as a point in R3·4·#poses. All such points that can be generated by
a given LBS rig define a simplex whose vertices are the handle
transformations across all poses (Figure 1). The simplex lives in
an (h− 1)-dimensional affine subspace of R3·4·#poses, where h is
the number of handles. As per the preferred terminology in math-
ematics, we call an affine subspace a flat. (See Appendix A for
definitions and useful identities.) Therefore, our challenge is to fit
a simplex to the observed data. This is related to a well-studied
problem in the field of hyperspectral imaging, where the vertices of
the smallest-volume simplex enclosing all observed points are the
“pure”, unmixed data [Cra94]. Although, in our setting, we do not
observe any transformation matrices directly, each vertex vi, based
on its deformed position in other poses v′p,i, defines a 9 · #poses-
dimensional flat in R3·4·#poses. Our algorithm can be summarized as
follows:

1. We first estimate a point in R3·4·#poses for each vertex. We do
this by intersecting vertices’ flats (Section 4.1).

2. For a rig with h handles, all points must lie on an (h−1) dimen-
sional flat in R3·4·#poses. We search for the (h−1)-dimensional
flat whose distance to the vertices’ flats is minimized (Section
4.2).

3. Finally, we compute the closest point on the (h−1)-dimensional
flat to each vertex’s flat. The smallest enclosing simplex for these
points provides us with the transformations (its vertices) and
skinning weights (trivially computed as barycentric coordinates)
(Section 5).

One advantage of our approach is that the simplex encloses the
observations and so has the lowest possible error of any set of han-
dles of given size (i.e., our approach can generally achieve smaller
reconstruction errors than the state of the art). By contrast, the clus-
tering used in previous inverse LBS algorithms may choose handles

inside the simplex which, due to the convexity constraints on the
weights, cannot contribute to all vertices. We re-frame inverse LBS
as two simple sub-problems: minimizing flat/flat distances and find-
ing the smallest-volume simplex. This has additional benefits: (i)
The reconstruction error is completely determined by the answer
to the first problem, enabling an efficient bisection search for the
optimal number of handles. (ii) The second subproblem is actively
studied in the field of hyperspectral unmixing; improved algorithms
can therefore be immediately applied to improve inverse LBS results.
(iii) Our per-vertex transformation matrix initial guess (Section 4.1)
could be used by other inverse LBS algorithms.

We evaluate our algorithm on 16 distinct models from the liter-
ature and newly created. Some models are based on performance-
capture data and some have known ground-truth rigs. We provide
numeric comparisons in all cases and video comparisons when avail-
able. We also evaluate choices made in our algorithm’s design, such
as the impact of our initial guess.

Our approach to minimize flat/flat distances is not guaranteed to
find the global optimum. However, in posing inverse skinning as a
flat/flat distance minimization problem, we provide a fresh direction
for future progress on this problem. In Section 4 and Appendix C,
we describe numerous (inferior) alternative approaches to minimize
flat/flat distances and experiments with scenarios in which the global
optimum can be reliably found. We consider this to be an important
contribution of our work.

2. Related Work

Skinning decomposition An early form of inverse LBS was first
studied by [WP02] as a way to overcome LBS artifacts like joint
collapse and the so-called candy-wrapper artifacts [GB08]. To over-
come these limitations, with the assumption that each pose is associ-
ated with a bone skeleton, they solve for skinning parameters in a
more general model than LBS in which vertices have independent
weights for each entry in the transformation matrices. [JT05] were
the first to study the inverse LBS problem with a single weight per
transformation matrix. They proposed to extract rotations from mesh
triangles in correspondence via polar decomposition, and then apply
mean-shift clustering on the rotations to obtain an initial estimate
of bone transformations. They then progressively correct skinning
weights and bone transformations to better match the input. Various
follow-up works also estimate full bone skeleton hierarchies from
example poses [SY07,DATTS08,HTRS10]. All of these approaches
are based on an analysis of 3D motion, often including a clustering
step. In constrast, our approach is based on the convex geometric
structure of transformation matrices as high-dimensional points. We
do not consider skeleton hierarchies or rigid transformations. Our
handles are defined as the vertices of the simplest possible convex
hull—a simplex. Handles found by clustering make a suboptimal
use of the affine subspace, since they cannot contribute to points
outside the convex hull of the handles. As a result, our approach is
able to achieve lower errors with the same number of bones.

[KSO10] proposed to view the inverse skinning problem as a
special case of matrix factorization. They achieve fast performance
in part by first reducing the dimensionality of the mesh positions,
followed by iterative quadratic optimization for all vertices’ trans-
formations, skinning weights, and rest pose positions. In particular,
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they solve small isolated problems or a system dependent on the
number of poses, not the number of vertices, and take advantage of
their weight sparsity assumption. Le and Deng [LD12,LD13,LD14]
presented a suite of works that address skinning decomposition,
weight compression, and automatic rigging with a bone skeleton, re-
spectively. Our problem statement is similar to Le and Deng [LD12],
which computes handle transformations and skinning weights given
a set of posed meshes. They optionally enforce rigid handle trans-
formations and sparse weights, which our approach does not. In
the absence of sparsity considerations, our approach is faster and
achieves lower errors. Recently, Mukai and Kuriyama [MK16] pro-
posed a practical method to synthesize plausible and dynamic skin
deformation based on an auxiliary helper bone rig. [HSK15] intro-
duced a method to solve for high-level rig parameter given bone
skeleton transformations. [TE] introduced a method to replicate non-
linear as-rigid-as-possible deformations, and optional given poses,
given a mesh and skeleton. They support skeleton joint limits and
provide interactive tools for editing weights. [LMR∗15] described
SMPL, a skinning and blend shape-based model for human body
shapes and poses. They obtain model parameters via optimization
(training), to minimize the error from observed data. They have addi-
tional degrees of freedom (blend shape parameters) but initialize and
regularize their optimization with a known human rig. Our approach
could be useful within their optimization. We do not consider these
additional kinds of rigs or bones. [JBK∗12]’s FAST method takes as
input a rigged model (including skin weights) and transformations
for a subset of the handles. Our work is orthogonal, as it finds the
rig and the transformations. For a recent survey of inverse LBS
approaches, see [JDKL14] Part IV.

In sharp constrast with all previous approaches, we solve the
inverse LBS problem from a fresh point of view: finding a sim-
plified convex hull of transformation matrices as points in a high-
dimensional geometric space. We accomplish this via flat estimation
followed by hyperspectral unmixing. We provide new insights into
the flat estimation problem and are quickly able to generate solutions
within a given reconstruction error.

Surface registration Both our approach and the aforementioned
inverse LBS approaches assume vertex correspondences across all
mesh poses. However, several related works do not require this
assumption. Chang and Zwicker [CZ08, CZ09, CZ11] presented a
series of works on surface registration for articulated shapes; their
solution takes the form of LBS with binary weights, which is akin
to segmenting the surface at joints and restricting transformations to
rigid motions.

Surface registration is also a fundamental problem in computer
graphics. A large body of literature has been published on surface
registration via Iterative Closest Point (ICP). Most closely related
to our needs, [ARV07] extend the ICP framework to nonrigid reg-
istration using different regularizations with an adjustable stiffness
parameter. Like us, they also find per-vertex affine transformation
matrices. In constrast with our approach, they solve a large, sparse
system of equations with a smoothness term between neighboring
vertices. [SE09] describe a new cost function for ICP by minimizing
a first-order approximation of its cost function. [YMYK14] pro-
posed to find geometric as well as semantic consistencies with user-
specified features while preserving mesh topology. Among various

surface registration applications, deformable 3D shape registration
with a known mesh topology draws our special attention. For exam-
ple, [CTA∗14] proposed to first find the reliable correspondences
using a spin-image method, and then minimize an energy consisting
of rotation, regularization, and correspondence terms. [PB11] com-
pute an as-rigid-as-possible deformation based on local similarity
transforms. We aim to address a much simpler problem, since we
are given the correspondence, with the restriction that our solution
lies in a low-dimensional LBS subspace.

Subspace Clustering Several existing works considered the prob-
lem of clustering onto flats [ZSWL12, HYL∗03] or clustering flats
via closest points [GLS10, LS13]. None of these works consider the
scenario where both the input data and output clusters are flats. In
contrast, in our scenario, the input data are flats (defined by each
vertex’s undeformed and deformed positions) and the output is a
single flat, since in LBS all transformations must lie on the same flat.
Our flat optimization (Section 4) must solve the flat/flat distance
problem.

Hyperspectral unmixing Blind hyperspectral unmixing, also
known as unsupervised hyperspectral unmixing, is an active area
of research in signal processing. The goal is to recover the spec-
tral signatures of the constitutive materials present in a hyperspec-
tral image along with their abundances in each pixel [MBDC∗14].
In the terminology of computer graphics, the input is an image
with more than three channels per pixel, and each pixel is as-
sumed to be the linear mixture of an unknown palette. The goal
is to recover the palette, which they call endmembers, and mixing
weights, which they call abundances. In our problem, we want to
decompose per-vertex transformation matrices into a set of han-
dle transformations (pure materials) and skinning weights (abun-
dances). [Cra94] conjectured that the no-pure-pixel hyperspectral
unmixing problem could be solved by finding the minimum-volume
simplex enclosing the set of observed points. Since then, increas-
ingly efficient and more robust-to-outliers algorithms have been
proposed [CCHM09, BD09, ACMC10, ALBDP14, LCWC16]. In
practice these algorithms work extremely well, despite it being well
known that the minimum-volume enclosing simplex problem, in
general, has local minima and even infinite families of minimal
solutions [HGPP13]. In the last few years, two independent suffi-
ciency proofs have explained why the optimal simplex can be exactly
recovered under surprisingly mild conditions [LML∗15, FMHS15].

Hyperspectral unmixing is equivalent to nonnegative matrix fac-
torization (NMF), whose solution in general is NP-complete [Vav09].
Fortunately, if the NMF is separable, then the time complexity be-
comes polynomial [AGKM12]. An NMF problem M = UV with
(U,V )≥ 0 is called separable if there exists a factorization where
each column of U equals a column of M). Separability corresponds
to the so-called pure-pixel assumption in hyperspectral unmixing,
in which every material is observed not mixed with any others in at
least one pixel. We do not make this assumption, and we also do not
want our handle transformations to be non-negative.

3. Background

The 3×4 affine transformation matrices applied to a rest pose ver-
tex vi in every pose can be (row-major) vectorized and stacked
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vertically, one pose above the other, to form a very tall column ma-
trix in R12·#poses. The set of all transformation matrices obtainable
by an LBS rig, ∑

h
j=1 w jTj such that ∑w j = 1, forms an (h− 1)-

dimensional affine subspace, or flat, in R12·#poses. With the con-
straint that weights are positive (w j ≥ 0), the set defines a simplex
in the flat. See Figure 1 for an illustration. In our inverse skinning
problem, this handle transformation flat is unknown.

Flats generalize the concept of a line or plane (a linear subspace
offset from the origin) to higher dimensions. In 2D (resp. 3D), two
lines (resp. planes) almost always intersect, because they are both
hyperplanes, or flats whose dimension is exactly one less than the
ambient space. The general scenario, in which the flat dimension
is at least two less than the ambient dimension, is akin to lines
in 3D, which “rarely” intersect. The distance between two flats is
the distance between their closest points. See Appendix A for a
detailed description of flats. Briefly, a flat can be defined explicitly
as L= {p+Bz}, where the columns of the matrix B span directions
parallel to the flat, z is the vector of parameters, and p is again a
point on the flat. A flat can also be written as L= {Fw}, where the
columns of the matrix F are points in the flat and the parameters w
must sum to 1. Finally, every matrix equation defines a flat implicitly:
L= {x ∈ Rn | Ax = a}.

In our inverse skinning setting, vectorizing the expression that the
transformation matrices applied to an undeformed vertex vi equals
its position in all poses {v′p,i} implicitly defines a flat:

V̄ix =

v′1,i
...

v′p,i

= v′i (4)

where x is a point in the space of transformation matrices (R12·#poses)
and V̄i = I3·#poses⊗ v>i . The vi and v′p,i are column matrices, and
⊗ is the Kronecker product. vi is in homogeneous coordinates,
while v′p,i is not. V̄i is a (3 ·#poses)× (12 ·#poses) block diagonal
matrix with orthogonal rows. The implied flat V̄ix= v′i is (9 ·#poses)-
dimensional. The point x is the (row-major) vectorization of the
3× 4 affine transformation matrices stacked vertically one pose
above the other to form a column matrix. These per-vertex flats
are known based on the input to the inverse skinning problem. The
points in these flats are the matrices which transform an undeformed
vertex to its corresponding deformed positions. The flats are high-
dimensional, because the transformations are not unique (e.g., pure
translations).

Our first goal (Section 4) is to find a handle flat that minimizes the
distance to all vertex flats (Figure 2). In general, this distance will be
non-zero, because the handle flat has a much lower dimension than
the ambient space or the vertex flats. Our second goal (Section 5)
is to find an appropriate simplex in the handle flat containing all
vertices’ transformations (Figure 1). This is a well-studied problem
in hyperspectral imaging. The simplex provides the solution to our
inverse skinning problem. It determines the skinning weights and
handle transformations for each pose.

4. Per-vertex Transformations

The goal of this section is to find a flat L passing through or mini-
mizing the distance to the vertices’ flats, V̄ix = v′i (Figure 2). If L

xi
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Vertex i’s neighborhood

t8t7t6t5

Vertex j’s neighborhood

xj

Handle transformation flat Vertex flats

v1
v2

v3

v4

v5
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Figure 2: We seek the (h− 1)-dimensional handle transformation
flat whose distance to all vertex flats is minimal. Because h− 1
is typically smaller than the vertex flat dimension (9 ·#poses), we
visualize the handle transformation flat as a line. The closest points
in transformation-space to a set of vertex neighborhood flats is close
to the desired handle transformation flat. If the vertex neighborhood
flats all intersect at the same point, then the vertex neighborhood
has constant skinning weights. See text for details.

is (h−1)-dimensional, then any h affinely independent points in L
can be affinely combined to reproduce all points in L. (It is easy
to choose points for which the weights are convex combinations.)
Therefore, the LBS reconstruction error is determined by the flat,
not by the choice of points. Rather than searching for the handles
directly in R12·#poses, we search instead for a handle transformation
flat L. The goal of Section 5 will be to find points on the flat to serve
as the handle transformations.

The dimension of L is h−1, where h is the number of handles.
If h = 1, then L is a single point, and the solution can be found
in closed-form by inverting a small 4×4 square matrix. However,
when h > 1, we know of no guaranteed solution to the problem of
finding the flat L that minimizes the distance to a given set of flats
V̄ix = v′i :

argmin
L

∑
i

D(L,V̄ix = v′i)
2, (5)

where D measures the Euclidean distance between flats. We ex-
perimented with many ways to express and minimize the flat/flat
distance: direct gradient and Hessian-based optimization for an
explicit representation of L, including optimization on the Graff
manifold; gradient-based optimization based on projection matri-
ces; global optimization via basin hopping; computing the Karcher
mean; and several alternating optimization strategies, one of which
exhibited the best performance of all approaches. We describe this
superior approach in detail in Section 4.2. We describe alternative
approaches in Appendix C.

A straightforward expression for Equation 5 is

min
p,B ∑

i
‖V̄i(p+Bzi)−v′i‖2 (6)

where p ∈ R12·#poses and B ∈ R(12·#poses)×(h−1) are the explicit
representation for L, and zi ∈ Rh−1 are the parameters for the
closest point on L: zi = −(B>V̄>i V̄iB)−1B>V̄>i (V̄ip− v′i). The
pseudoinverse should be used when 3 ·#poses < h−1.
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The V̄i are defined in Equation 4 not to be orthonormal. As a
result, Equation 6 measures the distance from L to vertex i’s flat in
terms of the 3D position error, rather than the distance in R12·#poses.

Equation 5 is, in general, non-convex; to see this, consider a cube
in R3. Let the given flats be the lines through all 12 edges of the
cube. The line with the minimum distance to all given lines passes
through opposite corners of the cube; there are 4 equivalent solutions
separated by inferior solutions.

Figure 3 shows the results of an experiment in which we gen-
erate sets of 100 random d-dimensional flats in R24 that intersect
a k-dimensional flat, and then optimize for the k-dimensional flat
parameters from a random initial guess. We use a straightforward
explicit expression for the energy (Equation 6) optimized with a
Hessian-based trust region solver constraining B to lie on the Grass-
mann manifold [TKW16]. The solver terminated after a maximum
of 200 iterations. (200 iterations took 20 minutes on average. We
achieved qualitatively similar results in R12 at up to 1000 iterations.)
We report the energy of the local minimum found. All experimental
setups have a known zero-energy solution. When d = 0, the given
flats are points and the problem degenerates to a simple linear least-
squares problem; a perfect solution is always found. More generally,
when d + k < 24, a zero-energy solution can often be recovered,
though with decreasing success and rapidly increasing computation
time as d + k approaches 24. When d + k ≥ 24, the problem is triv-
ial. The set of unknown flats that do not intersect all given flats has
measure-zero, and so a random initial guess almost surely has zero
energy. In our inverse LBS scenario, the ambient space is R12·#poses,
the given flats have dimension R9·#poses, and the number of handles
is a small number independent of #poses. This combination seems
to place our problem into the zone where solutions are challenging
to find naively even when a known zero-energy solution exists. See
Figure 4 and our supplemental materials for a visualization of the
k = 3 scenario. See our supplemental materials for an animation of
the optimization iterations for the d = k = 1 scenario in 3D.

4.1. Initial Guess

In the absence of a closed form solution to this problem, we con-
jecture that nearby vertices are likely transformed by similar trans-
formation matrices. (In LBS, this will be exactly true when vertices
share the same skinning weights for all bones.) For each vertex and
its neighborhood, we can compute the point in R12·#poses whose
distance to the vertices’ flats is minimized in a least squares sense:

xi = argmin
x

∑
j∈{i}∪N (i)

∥∥∥∥ 1
‖v j‖2 V̄>j V̄ j(x− t j)

∥∥∥∥2

(7)

where the divisor normalizes the rows of V̄ j,N (i) are the one-ring
neighbors of vertex i, and t j is any valid transformation matrix in
vertex j’s flat as a point in R12·#poses. Neighbors are needed because
a single vertex doesn’t uniquely determine a transformation. A trivial
valid transformation matrix can be obtained as the pure translation
matrix mapping v j to v′p, j. V̄>V̄ is a block diagonal matrix whose
diagonal blocks are each simply v>v. When scaled by the divisor, it
is a projection matrix. Minimizing the above entails solving a 4×4
system of equations.

Since the metric we ultimately care about in inverse LBS is the 3D
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Figure 3: Solutions obtained from numerical optimization with vary-
ing given and unknown flat dimensions in R24. A known zero-error
solution exists for all scenarios. The errors are shown at log10 scale;
error is capped from below to 10−10. The number of solver itera-
tions was capped at 200. (We achieved qualitatively similar results
in R12 at up to 1000 iterations.) See the supplemental materials for
animations of optimization iterations.

error, we minimize a version of Eq. 7 that applies the transformation
to v j (left-multiplying by V̄ j), which leads to a simpler expression:

xi = argmin
x

∑
j∈{i}∪N (i)

‖V̄ jx−v′j‖2 (8)

because 1
‖v j‖2 V̄ jV̄>j = I. Due to the block diagonal structure of V̄i,

minimizing the expressions amounts to solving 4× 4 systems of
equations.

A vertex’s flat has a (9 · #poses)-dimensional nullspace and
(3 ·#poses)-dimensional row-space, so any 4 (or more) non-planar
vertices leads to a full-rank system. Intuitively, this is because the
action of a 3D affine transformation matrix cannot be determined
from its action on a plane; the scale factor in the direction orthogo-
nal to the plane remains unconstrained. When the sum of squared
distances (Eq. 7 or 8) is exactly 0, we know that all flats intersect at
a single point, the minimizer xi. This will be the case for vertices
whose neighborhoods always undergo the same affine transforma-
tions. This occurs in LBS whenever weights are locally constant.
This occurs at any rigid part of a shape. When the sum is non-zero,
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Table 1: Keeping different fractions of our per-vertex initial guess
results in different final error after 10 iterations of our bi-quadratic
flat optimization (Section 4.2). The initial guess was computed via
the unconstrained one-ring neighborhood. The lowest error is found
at approximately 50%.

Model
Transformation Errors / Vertex Errors ERMS

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

cylinder
0.23 0.27 0.22 0.01 8e-3 0.02 0.13 0.2 0.16 0.16
21.59 15.89 17.77 1.0 0.88 2.34 17.37 13.22 12.88 12.67

cube
0.07 0.11 0.10 0.09 0.10 0.11 0.11 0.11 0.11 0.13
5.55 6.87 6.25 6.37 6.12 6.28 6.49 6.65 8.55 7.58

cheburashka
0.04 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.06
1.24 0.90 0.82 0.85 0.92 0.75 0.95 0.81 0.94 1.16

wolf
38.74 108.14 21.99 0.61 0.2 0.14 0.15 0.14 0.12 0.19
0.04 0.09 2e-3 4e-8 2e-8 1.5e-9 2e-9 1.2e-9 1.3e-9 8.9e-10

cow
1.81 0.46 0.39 0.36 0.41 0.66 0.96 0.65 0.68 0.72
0.49 0.18 0.21 0.14 0.20 0.31 0.23 0.25 0.25 0.29

the intersection point is still likely to be near the optimal handle
transformation flat (Figure 2).

Given the set of minimizers xi, one for each vertex with an as-
sociated full-rank system (Eq. 8), we can compute an initial guess
for the desired flat Lguess via Principal Component Analysis (PCA).
PCA directly provides an explicit representation for a flat: the mean
is a point on Lguess, and the first h principal components form an
orthonormal basis for directions parallel to it. Note that this PCA
projection error is only approximate. It does not exactly capture
the desired flat/flat distance in R12·#poses or in 3D (Eq. 6). The ap-
proximation is due to the fact that the distance from a vertex flat
to Lguess may be smaller than the distance from a particular point
on that flat. The distance could also be larger, if the minimizers xi
of Eq. 7 and 8 are not restricted to lie on the vertex i’s flat. Since
vertices whose reconstruction error is large should be considered
outliers, we experimented with the fraction of vertices to keep before
computing PCA (Table 1). The lowest error was obtained near the
50th percentile, which we use for our results. See Appendix B for
additional experiments comparing variants of Equations 7 and 8.

In the following section, we improve the PCA approximation
Lguess via numerical optimization of Eq. 6.

4.2. Flat Optimization

We seek to minimize the sum of squared flat/flat distances (Eq. 6)
given an initial guess Lguess. To do so, we use the explicit affine
expression for the flat:

min
F ∑

i
‖V̄iFwi−v′i‖2 (9)

subject to 1>wi = 1. This expression is quadratic in each of F ,
wi, and even the rest pose positions V̄i. The quadratic expressions
for each wi are independent of each other and entail solving an
(h+1)×(h+1) system of equations. (The extra row and column are
for enforcing the sum-to-one constraint with a Lagrange multiplier.)
The quadratic expressions for each vi are independent of each other
and entail solving a 3×3 system of equations. The minimizer for F
results in a linear matrix equation:

∑
i

λi

(
I3·#poses⊗ (viv>i )

)
F
(

wiw>i
)
=−λi ∑

i
V̄iv′>i wi (10)

where λi are per-vertex weights which we set to the smallest sin-
gular value of the system used to solve for wi. Via the row-major
vectorization identity vecrow(ABC) = (A⊗C>)vecrow(B), and the
observation that the identity matrix in Eq. 10 leads to a repeated-
block diagonal system matrix, this results in a 4h× 4h system of
equations. (Only a single block needs to be solved with multiple
right-hand-sides.) We set the initial F to Lguess and then alternately
solve for wi and F (and optionally V̄i) for a few iterations (i.e., no
more than a specified maximum number of iterations, e.g. 2, or until
the Frobenius norm between successive iterations of F falls below a
threshold, e.g. 0.2).†

Figure 5 compares our optimization approach with a variety of
alternatives. These approaches are detailed in Appendix C. Our
alternating bi-quadratic approach immediately achieves low error
and makes little further progress. Figure 4 and the supplemental
materials visualize the iterative optimization of a 4-bone model
(cylinder), with and without our proposed initial guess. The handle
flat for this model is a 3D affine subspace. We visualize the closest
points on this flat to each vertex’s flat.

The result of this optimization is a flat L. This process is quick,
and exactly captures the LBS error for a rig with h handles. When
the desired number of handles is unknown, we run a binary search on
h to find the smallest number of handles whose LBS reconstruction
error is below a desired threshold.

The closest point on L to each vertex flat is given by Fwi. These
points are the input to the next stage of our algorithm which com-
putes the final LBS rig (skinning weights and handle transforma-
tions).

5. Handle Transformation and Skinning Weights Estimation

Given a set of points in R12·#poses all lying on a flat with dimension
h−1, the goal of this section is to compute a tight-fitting (h− 1)-
simplex around them. The h vertices of the simplex will serve as
the handle transformations. The points’ well-defined barycentric
coordinates will serve as their skinning weights. This is the mini-
mum volume simplex problem studied in the hyperspectral imaging
community. We claim no particular contribution over the state-of-
the-art [CCHM09, BD09, ACMC10, ALBDP14, LCWC16], though
we are the first to recognize its relevance for inverse skinning. We
provide a description for completeness.

Any simplex enclosing the set of points provides us with a set
of handle transformations and skinning weights that satisfy the
convexity constraints. All such simplices will have the same error
in reproducing the poses; the error is entirely determined by the flat
chosen in the previous section. Due to the linearity of LBS, this
holds true even for arbitrary blends of the handle transformation
matrices (e.g., during animation). Linearity tells us that we would

† To prevent tangential drift, we normalize W’s columns to be unit length
from their average. To measure convergence with principal angles, F could
be taken as a point on the Graff manifold and identified with a point on
the higher-dimensional Grassmann manifold (Appendix A). We found the
alternative of comparing both the principal angles of the parallel directions
of F along with the Euclidean distance between flats to be numerically
unstable.
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Proposed initial guess 1 iteration 5 iterations 10 iterations 20 iterations ground truth

1 iteration 5 iterations 10 iterations 20 iterations 1000 iterationsRandom initial guess

Figure 4: Visualization of bi-quadratic flat optimization on the cylinder example, with and without our proposed initial guess. In this example,
there are four bones, each the vertex of a tetrahedron, so the desired handle flat is 3D. The points visualized here are the closest points on
the handle flat to each vertex’s flat (computed via projection). Because the orientation of the visualized 3D space is arbitrary (obtained via
PCA from the ambient R48), we apply a procrustes transformation between adjacent iterations. Top row: From our initial guess (Section 4.1),
our bi-quadratic optimization (Section 4.2) rapidly recovers a result close to the ground truth in only a few iterations. Bottom row: From a
random initial guess, our bi-quadratic optimization reaches a state dissimilar to the ground truth from which little progress is made. See the
supplemental materials for videos of the optimization progress.

see the same result as if we were to blend the observed posed mesh
vertices directly.

Finding a minimum volume enclosing simplex is useful insofar
as it leads to sparser skinning weights. The barycentric coordinates
of a point are sparser the closer a point is to a face of a simplex.
(Lower-dimensional faces are sparser than higher-dimensional ones;
e.g., points that lie on 3-simplex faces of a simplex have only 4
non-zeros.) The minimum-volume enclosing simplex ensures that
there are points at least on all (h−2)-faces.

Figure 6: A simplex is al-
ways regular in weight-space.
If the convex hull (dashed
line) of observed points (black
dots) encloses a ball of ra-
dius 1√

h−1
, and the “purest”

observed point prevents any
rotated regular simplex from
also enclosing the points, then
the minimum volume enclos-
ing simplex is unique and ex-
actly recovers the ground truth
simplex vertices (blue dots).

Therefore, although our ap-
proach does not make sparsity
guarantees, this step increases
sparsity and often leads to a
large number of almost-sparse
weights (< 0.1). One could ap-
ply the weight-reducing post-
process of [LS10]. (Intuitively,
naive k-largest weight projec-
tion is akin to projecting points
to the nearest (k− 1)-face of
the simplex. The discontinu-
ities result from nearby points
in R12·#poses being on opposite
sides of an angle bisector.)

Minimum volume sim-
plex techniques work well
in practice, even when
all observed data is quite
blended (the “no pure-pixel”
assumption), despite the
seeming ill-posedness of the
problem [HGPP13]. In our
experiments, for LBS-created animations, given ground truth
blended pose transformation matrices for mesh vertices, the

minimum volume enclosing simplex exactly recovers the original
LBS rig (handle transformations and skin weights) (Table 5).

The surprising success of these algorithms was recently ex-
plained by two (independent) proofs of sufficiency criteria [LML∗15,
FMHS15]. The criteria are fairly mild. They are summarized in Fig-
ure 6. Interestingly, the criteria become easier to satisfy in higher
dimensions as 1√

h−1
decreases.

5.1. Finding a Minimum Volume Enclosing Simplex

Our first step is to apply Principal Component Analysis (PCA) and
project the (12 ·#poses)-dimensional points that lie on an (h−1)-
dimensional flat down to h−1 dimensions.

Let C be a matrix whose h columns are the (h−1)-dimensional
vertices of a simplex in homogeneous coordinates (a 1 appended).
Then C is a square h× h matrix whose bottom row is all 1’s. The
simplex volume is equivalent to the absolute value of the determinant
|C|. Let D be an h×#points matrix where each column is one of the
(h−1)-dimensional observed points in homogeneous coordinates.
Our straightforward objective function can be expressed as:

min
C
|det(C)| (11)

subject to:

C−1D≥ 0 (12)

Ch,i = 1, ∀i ∈ [1,h] (13)

Eq. 13 imposes the homogeneity of C, which in turn imposes the
affinity of barycentric coordinates. In the above formulations, the
constraint Eq. 12 which computes the barycentric coordinates is
nonlinear, which makes Eq. 11 difficult to solve. Since det(C−1) =

1
det(C)

, min(|det(C)|)⇔ max(det(C−1)). Let X = C−1. Because
the volume of a simplex increases exponentially with its dimension,
the gradients of this objective function quickly become vanishingly
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Figure 5: Our alternating bi-quadratic optimization rapidly achieves
very low error compared to other experimental optimization strate-
gies. In one case (cylinder), Hessian-based optimization restricted
to lie on the Grassmann manifold achieves ground truth and super-
linear convergence after 93 minutes of computation. See Section 4.2
and Appendix C for details of these approaches.

small. Instead, one can optimize the logarithm of the determinant
of X as a better-behaved objective function. This monotonic trans-
formation does not affect the solution. Eq. 11 can be reformulated
as:

min(− logdet(X)) (14)

subject to:

XD≥ 0 (15)

X1h = [0,0,0, . . . ,1]T (16)

where 1 is a column vector of 1’s. Eq. 16 imposes the homogeneity
of X−1. Eq. 14 is a nonlinear minimization problem with linear
constraints. Constrained gradient-based optimization, e.g., SLSQP
[Kra88] works successfully albeit too slowly for our large problems.

Following the work of [ALBDP14], we optimize the objective
function using sequential quadratic programming (SQP) with a local

Table 2: A comparison of reconstructed vertex error and computation
time between [KSO10] and our flat optimization (Section 4).

Dataset # vertices # poses # bones
Approx. error ERMS Execution time (minutes)

Kavan et al. Ours Kavan et al. Ours

crane 10002 175 40 1.4 0.73 0.36 2.66

elasticCow 2904 204 18 3.6 3.23 0.08 1.16

elephant 42321 48 25 1.4 0.46 0.37 3.49

horse 8431 48 30 1.3 0.35 0.07 0.67

samba 9971 175 30 1.5 0.86 0.26 2.1

majorizer for the quadratic and linear terms:

f (x) = 1
2

x>Gx+ c>x+ constant (17)

where c= g−Hx and G= diag(H). g is the gradient of− logdet(X)
at our current (vectorized) guess for X , and H is the Hessian. The
gradient, Hessian, and inverse Hessian have simple closed-form
expressions. g = vec(−X−T ), H = X−T ⊗X−1, and H−1 = XT ⊗
X .

We solved Eq. 17 subject to the constraint Eqs. 15 and 16 with
MOSEK [ApS18] via CVXOPT’s qp interface [ADV18]. If the re-
turned solution increased the simplex volume (the majorizer is only
local), we iteratively bisect the line segment between the returned
solution and our previous solution until the simplex volume de-
creases or convergence. Unlike [ALBDP14], we terminate after a
maximum of 10 rather than 4 SQP iterations; further iterations make
little progress.

Given a solution X , handle transformations in all poses are sim-
ply the columns of X−1 rotated and translated back to R12·#poses.
Skinning weights are trivially computed as XD.

Initial guess We start optimization with a valid initial guess. We
translate the data points so that all entries become positive (the
minimum corner of the axis-aligned bounding box b). The translated
points are now bounded on all-but-one side by the axis-aligned
planes through the origin. We then find the offset of the plane with
normal 1 so that all translated points lie on the origin-side of the
plane. The smallest such offset d for this plane is the maximum L1
norm of any translated point. The vertices of a valid initial simplex
are the intersection points of the plane with each coordinate axis:
(d,0,0, . . .),(0,d,0, . . .), . . . along with the origin. (These vertices
must be translated by −b.)

6. Results and Evaluation

We evaluated our algorithms on a 2015 13” MacBook Pro with a
2.9 GHz Intel Core i5-5257U processor and 16 GB of RAM. We
tested our methods on various models with different sets of poses
given as 3D triangle meshes with vertex correspondence. The dataset
includes new examples with known ground truth bone transforma-
tions and per-vertex weights computed via Bounded Biharmonic
Weights [JBPS11]. Tables 7 and 5 and Figure 8 show reconstruction
errors for per-vertex transformations and per-bone transformations,
respectively. In this validation experiment, we run our simplex opti-
mization until convergence.

We also evaluated our algorithm on examples from two state-of-
the-art approaches, [KSO10] and [LD12]. These examples were
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Table 3: A comparison of reconstructed vertex error and computation
time between SSDR [LD12] and our flat optimization (Section 4).

Dataset # vertices # poses # bones
Approx. error ERMS Execution time (minutes)

SSDR Ours SSDR Ours

cat-poses 7027 9

10 6 5.51 0.5 0.34

15 4.2 3.02 0.8 0.50

20 3.3 1.32 1.3 0.57

25 2.5 0.47 1.9 0.61

chickenCrossing 3030 400
20 7.0 3.79 11.8 6.47

28 4.2 1.46 24.6 7.48

elephant-gallop 42321 48
10 3.9 5.95 12.6 1.52

20 2.2 1.65 31.7 2.20

27 1.6 0.69 50.5 3.48

elephant-poses 42321 10
10 6.6 15.982 5 1.47

21 2.8 2.52 17 1.92

face-poses 29299 9 27 3.2 0.59 13.9 1.61

horse-collapse 8431 53
10 4.6 4.19 2.1 0.33

20 3.1 0.92 4.7 0.52

horse-gallop 8431 48
10 4.8 3.89 1.9 0.33

20 2.3 0.91 6 0.49

33 1.6 0.26 10.4 0.75

horse-poses 8431 10
10 5.5 4.89 0.6 0.24

20 2.6 1.11 1.6 0.32

lion-poses 5000 9
10 5.8 5.79 0.3 0.12

21 3.0 1.03 0.9 0.17

pcow 2904 204
10 7.3 5.98 2.5 0.97

24 3.3 2.25 7.4 1.25

pdance 7061 201
10 4.2 3.40 6 2.17

24 1.4 0.27 22.8 2.12

pjump 15830 222
20 4.2 3.19 36.1 4.26

40 2.6 1.43 94.2 5.09

Table 4: A comparison of reconstructed vertex error and bits per
vertex per frame (bpfv) time between [LDJ∗19] and our flat opti-
mization (Section 4).

Dataset # vertices # poses # bones
Approx. error ERMS bpfv

Luo et al. Ours Luo et al. Ours

chickenCrossing 3030 400
20 12.34 3.79 4.02 4.13

28 6.90 1.46 5.62 5.79

elephant-gallop 42321 48
10 29.48 5.95 6.57 6.76

20 7.86 1.65 13.50 13.51

27 4.11 0.69 18.49 18.24

horse-collapse 8431 53
10 1.83 4.19 6.67 6.49

20 0.31 0.92 12.55 12.99

horse-gallop 8431 48
10 33.28 3.89 7.01 7.12

20 5.59 0.91 14.85 14.24

33 1.73 0.26 23.82 23.50

pcow 2904 204
10 61.57 5.98 2.84 2.89

24 11.28 2.25 6.92 6.94

pdance 7061 201
10 40.30 3.40 2.79 2.14

24 8.11 0.27 5.17 5.13

pjump 15830 222
20 11.28 3.19 3.33 3.37

40 2.07 1.43 6.89 6.74

crane 10002 175 40 3.37 0.73 8.76 8.85

elasticCow 2904 204 18 20.45 3.23 5.97 5.20

elephant 42321 48 25 4.64 0.46 17.07 16.89

horse 8431 48 30 2.45 0.35 20.94 21.37

samba 9971 175 30 3.58 0.86 6.60 6.64

not created by linear blend skinning and do not have zero-energy
solutions. For all examples, we run our bi-quadratic flat optimiza-
tion with our initial guess (unconstrained, one-ring neighborhood
keeping transformations for vertices with the 50-th percentile low-
est error). The running time for the initial guess is small, less than
10 seconds for most models and approximately 30 seconds for the
elephant, our most complex example.

We compared our bi-quadratic flat optimization approach with
two state-of-the-art inverse skinning models, [KSO10] and Smooth
Skinning Decomposition with Rigid Bones (SSDR) [LD12]. [LD12]
discussed and showed the superiority of their SSDR method over
previous approaches like Skinning Mesh Animations (SMA) [JT05]
and Learning Skeletons for Shape and Pose (LSSP) [HTRS10].
For the consistency of comparison, we use the same error met-
ric used by SSDR and proposed in [KSO10], which is ERMS =

1000
√

∑i ‖v̂i−v′i ‖2

3|V ||P| , where v̂ and v′ are the recovered and ground

truth vertex positions, |V | is the number of vertices and |P| is the
number of poses. Our bi-quadratic flat optimization reduces error
quickly in most cases (Figure 5). Therefore, for the sake of effi-
ciency, we terminate optimization after 4 iterations. Table 2 shows
that our bi-quadratic flat optimization achieves a smaller vertex error
than Kavan et al.’s approach, though at the cost of slightly longer
computation time. We speculate that Kavan et al.’s better perfor-
mance is due to their assumption of 4-sparsity for the weights. By
fixing the sparsity pattern, they have 4 degrees of freedom per vertex
rather than h. They also operate in reduced coordinates by elimi-
nating vertices with linearly dependent trajectories. Table 3 shows
that our approach not only generally outperforms SSDR in error
measurement, but also has a big win over SSDR on performance.
Table 3 contains the error and running time as reported in [LD12];
we also ran their code without the rigidity constraint with virtually
no change to the reported error and running time. Figure 7 and
the supplemental videos show that our output closely matches the
ground truth, whereas [LD12] produces visual artifacts. (See the
supplemental materials for full recovered sequences, including side-
by-side comparisons with previous work when available.) Unlike
these approaches, we do not enforce 4-sparsity for the recovered
weights. Popular automatic skin weight approaches do not generate
sparse weights [JBPS11, BP07].

Inverse skinning can also be used as a form of mesh animation
compression. Mesh animation compression algorithms take a tempo-
rally coherent sequence of frames as input and produce an encoding
that aims to minimize the reconstruction error for a target bits per
vertex per frame (bpfv). The bpfv for an uncompressed 3D vertex is
3 ·32 bits using single-precision floating-point numbers. In inverse
skinning, the handle weights are a fixed cost per vertex (h ·32 bits
using single-precision floats), regardless of the animation length.
Each animation frame requires an affine transformation matrix per
handle to be shared by all vertices ( 12·h

#vertices ·32 bits). The total bpfv
for a given mesh animation compressed using inverse skinning is
obtained by adding the per-frame bits to the fixed cost amortized
across all frames. In Table 4, we compare our approach to a state-of-
the-art mesh animation compression method [LDJ∗19]. (We omit
examples consisting of temporally incoherent poses, for which the
technique of [LDJ∗19] is not applicable.) In all but one animation,
our approach obtains a much lower reconstruction error for the same
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Table 5: Information about per-bone transformation estimation (Sec-
tion 5) on various models. Each model’s examples are generated
manually from skeletal deformation. Hyperspectral unmixing ap-
proach can recover ground truth within minutes.

Model # vertices # faces # bones
# iterations Transformation

Weight error
Optimization

to converge error per bone time (min)

cylinder 420 800 4 4 6.1e-5 2.1e-5 <0.005

cube 1538 3072 4 3 2.9e-5 2.4e-4 <0.005

cheburashka 6669 13334 11 9 2.9e-6 9.7e-7 0.96

wolf 5075 10018 21 13 7.3e-5 4.8e-6 5.12

cow 11666 23328 15 10 8.8e-5 7.1e-7 16.19
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Figure 7: Our output closely matches the input mesh sequences.
The output from SSDR [LD12], even without rigidity constraints,
displays clear visual artifacts. (We render with flat shading to accu-
rately portray surface quality.) See the supplemental materials for
entire mesh sequences.

total bpfv. Across all examples, our approach’s reconstruction error
is a factor of 4.6× lower (geometric average). In the one example
for which our approach is inferior, a horse collapses as if made of
cloth. We conjecture that any animations in which large portions of
a shape move coherently (if not rigidly) will be better compressed
using inverse skinning.

As shown in Table 5 and Figure 8, our hyperspectral unmixing ap-
proach recovers nearly exact ground-truth per-bone transformations
and skinning weights when given perfect (ground-truth) per-vertex
transformations. To measure transformation error, we use the mean
absolute error across all 12 · #poses entries in the transformation
matrices. To further verify the recovery’s correctness, we visualize
each bone’s position as the weighted center of mass of all vertices
and each bone’s influence as a distinct color. Figure 8 shows that
our hyperspectral unmixing approach is sensitive to errors from
per-vertex transformations. For this table and figure, we ran flat opti-
mization and simplex fitting each for 10 iterations. We experimented
with random sampling to drop outliers, but found that it did not help.
When comparing the visual distribution of per-vertex transformation
matrices between our recovered results and the ground truth, there
is sometimes a systematic error to our local minima (rotation in Rn)

Ground Truth Estimated Bones and Weights
(per-vertex transformations

from ground truth)

Estimated Bones and Weights
(per-vertex transformations

estimated via flat optimization)

Figure 8: Given ground truth per-vertex transformations (left), the
recovered weights and bone transformations match almost exactly
(middle). However, recovered per-vertex tranformations enclose too
big a volume in transformation space, resulting in incorrect bone
transformations and low sparsity (right). In all cases, vertex positions
are recovered almost exactly. Each handle is assigned a color and
visualized per-vertex via color mixing and with a yellow dot at its
center-of-mass.

rather than noise (Figure 4). Figure 9 visualizes our estimated bones’
positions and weights on examples not created with linear-blend
skinning and so without a zero-energy solution or ground-truth per-
vertex transformations. The human motion sequences were obtained
via performance capture. Run-time performance ranges from a few
seconds to minutes for larger models and is dominated by the num-
ber of handles rather than the number of vertices. In the future, we
would like to experiment with other simplex fitting algorithms that
claim superior performance [BD09, LCWC16].

7. Conclusion

We have shown that a re-formulation of inverse skinning as a prob-
lem in high-dimensional Euclidean space leads to a very fast and
novel decomposition of the problem. Our first stage poses the prob-
lem of finding per-vertex transformations as flat/flat distance mini-
mization. This problem has a simple expression. We experimented
with many approaches to solve this problem, resulting in a fast and
efficient solver. However, we consider this to still be an open prob-
lem. No approach is yet capable of recovering known ground truth
solutions. Our second stage connects skinning decomposition to
hyperspectral image unmixing, which is well studied in the field of
remote sensing. These algorithms make mild assumptions and are

c© 2020 The Author(s)
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Figure 9: The results of our hyperspectral inverse skinning pipeline
on examples not created with linear-blend skinning. These examples
do not have zero-energy solutions or ground-truth per-vertex trans-
formations. Human motion sequences are performance captured.
Our approach recovers the vertex positions with state-of-the-art
error. However, recovered per-vertex tranformations often enclose
large volumes in transformation space, resulting in low sparsity.
Each handle is assigned a color and visualized per-vertex via color
mixing and with a yellow dot at its center-of-mass.

capable of simultaneously recovering ground truth bone transfor-
mations and per-vertex skinning weights given correct per-vertex
transformations. Similar ideas involving the convex hull were suc-
cessfully used to find palette colors in RGB color space [TLG16].
The idea can be naturally transplanted to decomposing transfor-
mation data, where the number of independent bones equals the
dimensionality of all per-vertex transformations (e.g. reduced by
PCA).

Limitation and Future Work Our approach has several limita-
tions. We do not consider weight sparsity. In our scenario, 4-sparsity
can be interpreted as finding a set of tetrahedra sharing vertices. It
may be worth exploring an optimization for the vertices of a tetrahe-
dral mesh or in which a set of intersecting 3D flats are optimized.
Second, we do not constrain transformations to be rigid. This may
or may not be appropriate depending on the application. This may
aid in recovering ground truth per-vertex transformations, which
our flat optimization is currently unable to do. One could constrain
the vertices of the simplex to be rigid transformations, but this may
require an adjustment to the handle flat itself. Alternatively, one
could skip flat optimization and formulate a minimum-volume sim-
plex optimization problem where the simplex vertices directly lie
in R12·#poses. Finally, we do not consider artistic controls, such as
allowing the user to specify or suggest a handle’s position.
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Appendix A: Flats

A flat is an affine subspace of Rn. It generalizes the concept of a line
or plane (a linear subspace offset from the origin) to higher dimen-
sions. A flat L can be defined implicitly via L= {x ∈Rn | Ax = a},
where the row-space of the matrix A ∈ Rk×n is spanned by the di-
rections orthogonal to the flat and a is the product of A and a point
on the flat. The rows of A are often assumed to be orthonormal. We,
too, assume this, and so our flat is (n− k)-dimensional. Note that
when k = 1, this implicit form becomes the familiar expression for a
(hyper)plane with normal n: A = n> and so L= {x | n>x = n>p},
where p ∈ Rn is a point on the flat (hyperplane). A hyperplane is a
flat whose dimension is one less than the ambient space. It always
has one direction of perpendicularity, which is easy to visualize in
3D. A line in 3D has a 2D space of normals (and two rows in its A):
the plane perpendicular to it (Figure 10).

A flat can also be defined explicitly as L = {p+ Bz}, where
the columns of the matrix B span directions parallel to the flat,
z is the vector of parameters, and p is again a point on the flat.
The columns of B span the nullspace of A. If we assume that the
columns of B are orthonormal, then B ∈ Rn×(n−k) and z ∈ Rn−k.
A flat can also be written as Fw, where the columns of the matrix
F ∈ Rn×(1+n−k) are affinely independent points in the flat and the
parameters w ∈ R1+n−k must sum to 1.

It is also useful to consider projections onto flats. Assuming A
has orthonormal rows, Prow = A>A is a projection matrix mapping a
point in Rn to the closest point in A’s row-space. (If the rows of A are
linearly independent but not orthonormal, then the projection matrix
is A>(AA>)−1A.) The matrix I−Prow is a projection matrix onto
A’s nullspace. Given B with orthonormal columns, Pnull = BB>

and I−Pnull are projection matrices onto the nullspace and row-
space, respectively. (If B’s columns are linearly independent but
not orthonormal, Pnull = B(B>B)−1B>.) Depending on n,k and
the data at hand, desired projection matrices may be more readily
computed in one or the other manner. Given a projection matrix P,
P> = P = PP. The eigenvalues of P are either 0 or 1.

Table 6: The error resulting from various initial guess schemes
compared with ground truth. Position errors in R3 are computed
via ERMS from [KSO10]. Transformation errors in R12·#poses are
element-wise average absolute deviation.

Model
Transformation Errors / Vertex Errors ERMS

Unconstrained approaches Constrained approaches

One-ring Euclidean Geodesic One-ring Euclidean Geodesic

cylinder 0.19 / 7.65 0.09 / 38.3 0.34 / 167.55 0.24 / 0.0 0.08 / 0.0 0.32 / 0.0

cube 0.12 / 4.69 0.04 / 12.96 0.18 / 11.09 0.12 / 0.0 0.04 / 0.0 0.18 / 0.0

cheburashka 0.04 / 0.22 0.03 / 4.0 0.05 / 6.20 0.04 / 0.0 0.03 / 0.0 0.05 / 0.0

wolf 0.04 / 0.40 0.03 / 3.43 0.18 / 14.47 0.04 / 0.0 0.03 / 0.0 0.19 / 0.0

cow 0.25 / 0.13 0.18 / 1.21 2.18 / 29.85 0.25 / 0.0 0.18 / 0.0 2.12 / 0.0

The reader is referred to DuPré and Kass [DK92] for an in-depth
discussion on distance and degrees of parallelism between flats.

The space of all k-dimensional linear subspaces of Rn is known as
the Grassmann manifold Gr(k,Rn). The space of all k-dimensional
affine subspaces of a vector space is the less-well-known Graff
manifold Graff(k,Rn). The Graff manifold can be identified with
Gr(k+ 1,Rn+1) by intersecting a linear subspace with the plane
xn+1 = 1 (the hyperplane perpendicular to the last or n+ 1-th co-
ordinate axis). This intersection results in k+ 1 points in Rn (the
n+1-th coordinate for all points is 1). These k+1 points span the
affine subspace. The canonical or principal angles between k and
l-dimensional linear subspaces (defined by a k× n matrix B1 and
l×n matrix B2, each with orthonormal columns) can be computed
as the arccos of the singular values of B>1 B2; when k 6= l, there are
an additional |k− l| principal angles of π

2 .

Appendix B: Per-vertex Transformation Experiments

We experimented with Equations 7 and 8 (Section 4.1) with and
without the constraint that xi exactly reproduces the observed de-
formation (e.g. V̄ixi = v′i) and with three notions of vertex neigh-
borhoodsN (i): the one-ring and randomly sampling vertices from
within a Euclidean or geodesic distance of vi.

Table 6 shows 3D positional and transformation errors result-
ing from Equation 8 on a set of models with known ground-truth
transformations. In all tables, position errors in R3 are computed
via ERMS from [KSO10]. Transformation errors in R12·#poses are
element-wise average absolute deviation. For the unconstrained
approaches, the one-ring neighborhood generated the lowest 3D
position error. The exact reproduction constraint increased the trans-
formation error with negligible visual benefit to the position error.
The Euclidean neighborhood leads to slightly lower transforma-
tion error but substantially increased position errors. The geodesic
neighborhood produces worse results than the Euclidean. We ex-
perimented with various Euclidean and geodesic random sampling
strategies. We found that the best result among 10 random subsets of
48 vertices taken from the 120 nearest neighbors generally produced
the lowest error, so we used this random sampling strategy in our
tables. The tables show the result of minimizing 3D error (8), which
produced superior results to 7.

Table 7 compares the downstream performance of these strategies
followed by PCA as the initial guess for flat optimization (Sec-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



S. Liu & J. Tan & Z. Deng & Y. Gingold / Hyperspectral Inverse Skinning

Table 7: The error resulting from various initial guess schemes
followed by 10 iterations of our bi-quadratic flat optimization (Sec-
tion 4.2) compared with ground truth. In this experiment, we keep
the 50% of per-vertex initial guesses with lowest position error.

Model
Transformation Errors / Vertex Errors ERMS without

Unconstrained approaches Constrained approaches
initial guess

One-ring Euclidian Geodesic One-ring Euclidian Geodesic

cylinder 0.01 / 0.88 0.21 / 13.52 0.52 / 18.42 0.01 / 1.48 0.2 / 12.91 0.58 / 20.1 0.45 / 31.29

cube 0.10 / 6.12 0.11 / 6.59 0.28 / 10.76 0.11 / 5.97 0.09 / 7.96 0.34 / 9.52 0.2 / 15.51

cheburashka 0.02 / 0.92 0.04 / 0.83 1.02 / 1.59 0.02 / 0.83 0.03 / 0.91 0.99 / 2.15 0.1 / 1.22

wolf 0.2 / 1e-8 1.12 / 6.7e-8 2.19 / 1.3e-4 0.2 / 6.7e-9 2.11 / 1.1e-6 0.58 / 2.7e-5 0.32 / 5e-10

cow 0.42 / 0.2 5.53 / 0.27 10.92 / 0.98 0.27 / 0.22 1.46 / 0.31 18.57 / 1.76 1.63 / 0.74

tion 4.2). In this experiment, we perform PCA on the the 50% of per-
vertex initial guesses with lowest position error. The unconstrained
one-ring neighborhood outperformed the other strategies. As a re-
sult of our experiments, and owing to its simplicity and run-time
performance, we use the one-ring neighborhood with unconstrained
3D error (8) for our results.

Appendix C: How Not to Minimize Flat/Flat Distances

We seek to minimize the sum of squared flat/flat distances (Eq. 6)
given an initial guess Lguess. This minimization can be expressed in
numerous ways. See Figure 5 for a comparison where relevant.

Direct optimization (p,B) We directly optimize Equation 6 using
the BFGS algorithm [NW06]. This never achieves the low error of
our proposed bi-quadratic approach. We also experimented with
a combination of these two approaches, where we improve the bi-
quadratic solution with direct optimization or switch approaches
every 10 iterations. These combinations were inferior to simply
running the bi-quadratic approach for additional iterations.

Optimization on an appropriate manifold (p,B manifold) We
optimize Equation 6 with a various algorithms (gradient descent,
conjugate gradient, and trust region) on the space of Rn×Gr(h−
1,Rn) [EAS98, TKW16]. The gradient descent and conjugate gra-
dient algorithms are slower to compute and achieve higher error
per iteration than our proposed bi-quadratic approach. The Hessian-
based trust region algorithm is much slower to compute, taking hours
to execute 20 iterations. However, on our simplest example, a cylin-
der with four bones, the trust region algorithm achieves superlinear
convergence and the known ground truth solution (Figure 5).

Global optimization We employed basin hopping [WD97], which
is a stochastic global minimization algorithm in which random
modifications of the current state are optimized via continuous op-
timization. We used our proposed approach (Section 4.2) for the
continuous optimization. Basin hopping failed to improve upon the
error of our proposed approach alone. The random modifications
did not find basins with lower error. This approach is not plotted
in Figure 5, because the curve would cover that of our proposed
bi-quadratic approach.

Karcher Mean We experimented with computing the Riemannian
center of mass or Karcher mean of the given flats. The Karcher mean
was proposed in the literature [CHV17, MRBD∗14] as an effective
technique for finding the centroid to a set of points on a Riemannian
manifold. We experimented with representing flats as points on (a)

the product manifold Rn×Gr(h−1,Rn) or (b) the Graff manifold
identified with points on the higher-dimensional Grassmann man-
ifold (Appendix A). In our setting, the unknown flat has different
dimension than the given flats; in this case, the additional principal
angles needed for the geodesic distance computation are taken as π

2 .
Unfortunately, this approach does not find a flat with small distance
to other flats. We believe that this is due to the distortion of distances
on the product or Graff manifolds.

Iterative PCA (IPCA) We optimize Equation 6 with a different
alternating decomposition than our proposed bi-quadratic approach.
Instead, we alternate between (a) solving for the closest point on
each vertex’s flat to the handle flat L and then (b) solving for the
flat that minimizes the squared distance to these closest points. Step
(a) can be solved via

argmin
x

(x−p)>Pnull(x−p) (18)

subject to:

V̄ix = v′i (19)

where Pnull = I3·#poses − B(B>B)−1B> = I3·#poses − BB† is the
orthogonal projector onto the null-space of the handle flat (Ap-
pendix A) and B† is the Moore-Penrose pseudo-inverse of B. This
requires solving a different (3 · #poses)× (3 · #poses) system of
equations for each vertex, with the constraint implemented either
via Lagrange multipliers or as a least squares soft constraint. Step
(b) can be solved by principal component analysis (PCA), taking
the first h−1 principal components as the parallel directions for the
handle flat and the center as the point through which the handle flat
passes.

This iterative PCA (IPCA) approach produces better results than
all other techniques except for our bi-quadratic approach (and
the very expensive Hessian-based trust region approach). Our bi-
quadratic approach alternates between (a) solving for the closest
point on the handle flat L to each vertex’s flat (in terms of handle flat
parameters wi) and (b) solving for a new handle basis matrix F that
minimizes the distance to the vertex flats using the wi parameters.
Our bi-quadratic approach is faster to compute, as it only requires
the solution to a single, smaller 4h×4h system of equations.

Iterative Laplacian re-weighting Any point on a d-dimensional
flat can be represented as the weighted average of d + 1 or more
affine independent points. In our setting, this implies that the fol-
lowing energy for per-vertex transformation matrices ti ∈ R12·#poses

should be zero:

Elocal = ∑
i
‖ti− ∑

j∈N (i)
wi jt j‖2 (20)

whereN (i) are the neighbors of vertex i and wi j are scalar weights
that sum to one. Elocal can be expressed as Elocal = ∑i ‖Lt̄‖2, where
L is a 12 ·#pose ·#vertices laplacian matrix and t̄ is a column vector
containing all vertices’ transformation matrices across all poses. We
experimented with two definitions of vertex neighbors: the one-ring;
and a fixed, random set of 2h vertices. To reproduce the observed
poses, we wish to minimize:

Edata = ∑
i
‖V̄iti−v′i‖2 (21)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



S. Liu & J. Tan & Z. Deng & Y. Gingold / Hyperspectral Inverse Skinning

We optimize the sum of the two terms. The expression Elocal +Edata
is quadratic in either wi j or ti, so we alternate between solving for
one while fixing the other. When solving for wi j, Edata is constant
and can be ignored, resulting in a small, typically underdetermined,
local system per-vertex that can be solved in a least-square sense.
Solving for ti, however, amounts to solving a very large, sparse
system of equations. Finally, we take the first h−1 principal com-
ponents of the final ti to be the handle flat.

Because of the very large system of equations, this approach
executes much more slowly than our proposed bi-quadratic approach
and produces solutions with more error per iteration.

Orthogonal Projector The minimal distance between flats (Equa-
tion 5) can be written ‖C(x0−y0)‖, where x0 is any point on one flat
and y0 is any point on the other flat and C is the projection matrix
onto the intersection of the two flats’ orthogonal spaces [DK92]. For
our problem, this results in the expression:

∑
i
‖Ci(p− ti)‖2 = p>

(
∑

i
Ci

)
p+

(
∑

i
t>i Citi

)
−2p>

(
∑

i
Citi

)
(22)

where the ti are any valid transformation matrix in vertex i’s flat
(Equation 7). The projection matrix Ci can be written (via the
Anderson-Duffin formula) as Ci = 2PV̄i

(PV̄i
+PB)

†PB, where PB and
PV̄i

are orthogonal projectors onto the column-space of B and the
row-space of V̄i, respectively. This approach is unstable and tends to
increase error from a good initial guess.

Equation 22 is minimized (by setting the derivative with respect
to p to 0) when p = (∑i Ci)

−1 (∑i Citi). Substituting this expression
for p results in:

min
B

(
∑

i
t>i Citi

)
−

(
∑

i
Citi

)>(
∑

i
Ci

)−1(
∑

i
Citi

)
(23)

This expression is numerically unstable, because Ci is rank deficient.
This rank deficiency corresponds to the fact that p can be any point
on a flat. Even with a pseudoinverse, the expression is unstable.
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