IOLA: Compilable Markdown for Linear Algebra

UN IVERSITYY Creativity and Graphics Lab

Alec Jacobson

Yotam Gingold

MASON CraGL UN IVERSITY Creativity and Graphics Lab

Direct Delta Mush Skinning and Variants

BINH HUY LE, SEED - Electronic Arts
JP LEWIS, Google AI

Fig. 1. The skinned model (leff) is produced directly from the "unrigged" rigid bind model using our Direct Delta Mush algorithm. DDM can produce equivalent
results to the Delta Mush algorithm but uses a direct local computation rather than the iterated global "mush" runtime smoothing of DM. The DM and DMM results to the Delta Mush algorithm but uses a direct local computation rather than the iterated global "mush" runtime smoothing of DM. The DM and DDM
allorithms both provide greatly simplified authoring. They do not have the bulge and cleft artifacts common to other methods, which are prominent in the algorithms both provide greatly simplified authoring. They do not have the bulge and cleff artifacts common to other methods, which are prominent in the
under-arm and hip regions (respectively) in this example (red arrows). DDM offers further advantages over DM , as described in the paper. A significant fraction of the world's population have experienced virtual Characters through games and movies, and the possibility of online VR
social experiences may greatly extend this audience. At present, the skin deformation for interactive and real-time characters is typically computed using geometric skinning methods. These methods are efficient and simple to implement, but obtaining quality results requires considerable manual
"rigging" effort involving trial-and-error weight painting, the addition of virtual helper bones, etc. The recently introduced Delta Mush algorithm largely solves this rig authoring problem, but its iterative computational approach has prevented direct adoption in real-time engines.
This paper introduces Direct Delta Mush, a new algorithm that simulta neously improves on the efficiency and control of Delta Mush while gen
eralizing previous algorithms. Specifically, we derive a direct rather than iterative algorithm that has the same ballpark computational form as some
previous geometric weight blending algorithms. Straightforward variants previous geometric weight blending algorithms. Straightfor ward variants
of the algorithm are then proposed to further optimize computational and of the algorithm are then proposed to further optimize computational and
storage cost with insignificant quality losses. These variants are equivalent storage cost with insignificant qualty losses. hese varial
Our algorithm simultaneously satisisies the goals of reasonable efficiency
quality, and ease of authoring. Further, its explicit decomposition of rotaquality, and ease of authoring. Further, its explicit decomposition of rota tional and translational effects allows independent control over bending Author's adreseses Binh Huy Le, SEED - Electronic Arts Redwood City, CA, bbinh85@
gmailcom; PP Lewis, Google Al, San Francisco, CA, noisebrain@gmail.com. $\overline{\text { Permission to make difital or hard copies of all or part of this work for personal or }}$ classrom use is granted without fee provided that ocpies are not made or ofstribiuted
for profit or commercial advantage and hat copies bear this notice and the full citation
 author(s) must be honored. Abstracting with creditit is permitted. To copy otherwise, or
repulisht to post on servers orto redistribute to lists, requires prios specific permision
 ${ }_{0}^{\circ} 2019$ Copyright held by the owner ${ }^{0} 0$

Additional Key Words and Phrases: skinning, skeletal animation, delta mush. real time, deformation, character animation
ACM Reference Format:
Binh Huy Le and JP Lewis. 2019. Direct Delta Mush Skinning and Variants. ACM Trans. Graph. 38, 4, Article 113 (July 2019), 13 pages. https://doi.org/10.
$1145 / 3306346.3322982$

1 INTRODUCTION
Typically characters are the main focus of any movie or game. Major characters are often humans or animals, and thus are articulated models with rigid bones underlying deformable flesh and skin. Other objects in the scene such as trees can deform and may also be represented with a similar underlying approach. A key focus in al these cases is getting the deformation right.

A character deformation method suitable for games and inter active applications such as animation should have the following
characteristics: (1) speed, (2) quality, (3) simplicity of setup and authoring. Existing approaches to character deformation can be very broadly classified into geometric skinning and simulation ap proaches. Simulation approaches produce the highest quality but may be less suitable in terms of criteria (1) and (3). Regarding speed, simulation effects are not justified when nearly the same effect can be produced wirh a cheaper method. It should be remembered that
character deformation is just one of many things that must be com puted within the frame interval at typical frame rates of 24 fps (movie animation), 60 fps (games) or 120 fps (VR). Other tasks include various rendering steps, gameplay AI, collision detection, other types of physics, etc. Simulation approaches are also not ideal in terms of of physics, etc. Simulation approaches are also not ideal in terms of
simplicity. The rig may require constructing additional components

BINH HUY LE, SEED - Electronic Arts
JP LEWIS, Google AI
3.1 Original Delta Mush Model

This section revises the original Delta Mush (DM) model [Mancewicz et al. 2014] and presents notations to setup DM on top of a Linear Blend Skinning (LBS) model [Magnenat-Thalmann et al. 1988].

Assume that our character model is represented by a polygonal mesh with n vertices. The homogeneous position of vertex $i=$
 ${ }_{\substack{\text { alporith } \\ \text { undera }}}$ For convenience, we concatenate all vectors \mathbf{u}_{i} to a matrix $\mathbf{U}={ }^{\text {utinthe }}$ $\underset{\substack{\text { Asigitif } \\ \text { chandert }}}{ }\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right] \in \mathbb{R}^{4 \times n}$.
 $\substack{\begin{subarray}{c}{\text { detinm } \\ \text { unimp } \\ \text { timple }} }} \end{subarray}$ The transformation of bone $j=1 . . m$ is $\mathbf{M}_{j} \in \mathbb{R}^{4 \times 4}$. Let $w_{i j}$ be the
 $\underset{\substack{\text { virtarl } \\ \text { arperyac } \\ \text { a.e. }}}{\substack{m=1}} w_{i j}=1, \forall i$. Non-negativity and sparseness have no effect $\underset{\substack{\text { apprais } \\ \text { neousis }}}{ }$ on our formulation. Note that we use the LBS model for the sake of $\underset{\substack{\text { necuisimg } \\ \text { ferative }}}{\substack{\text { nen }}}$
 $\underset{\substack{\text { starage } \\ \text { osperif }}}{\text { oseometry }} \mathrm{V}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right] \in \mathbb{R}^{4 \times n}$ is computed as:

$$
\mathbf{v}_{i}=\sum_{j=1}^{m} w_{i j} \mathbf{M}_{j} \mathbf{u}_{i}, i=1 . . n
$$

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is ranted without fee provided that copies are not made or distributed classsom use is ranted without fee eprovided that popies are not made or orsistributed
for profit o commercial advantage and that copies bear this notice and the full citation

 ${ }_{0}^{\circ} 2019$ Copyright held by the owner ${ }^{0} \mathrm{OT30-30301/201917/} \mathrm{-ART113} \mathrm{515.50} 1$

3 spect be produced with a cheaper method. It should be seme effect can be produced with a cheaper method. It should be remembered that puted within the frame interval at typical frame rates of 24 fps (movie animation), 60 fps (games) or 120 fps (VR). Other tasks include various rendering steps, gameplay AI, collision detection, other types of physics, etc. Simulation approaches are also not ideal in terms of or physics, etc. Simulation approaches are also not ideal in terms of
simplity. The rig may require constructing additional components

Direct Delta Mush Skinning and Variants

BINH HUY LE, SEED - Electronic Arts
JP LEWIS, Google Al

3.1 Original Delta Mush Model

This section revises the original Delta Mush (DM) model [Mancewicz et al. 2014] and presents notations to setup DM on top of a Linear Blend Skinning (LBS) model [Magnenat-Thalmann et al. 1988].

Assume that our character model is represented by a polygonal mesh with n vertices. The homogeneous position of vertex $i=$ $\underset{\substack{\text { fig. } 11 . ~ \\ \text { results } t}}{ } 1 . . n$ at the rest pose is $\mathbf{u}_{i} \in \mathbb{R}^{4}$, where the $4^{\text {th }}$ component is 1 . uivalent ${ }_{\text {undera }} \begin{aligned} & \text { algorth } \\ & \text { und }\end{aligned}$ For convenience, we concatenate all vectors \mathbf{u}_{i} to a matrix $\mathrm{U}={ }^{\text {ttin the }}$ $\underset{\substack{\text { A signit } \\ \text { charate }}}{ }\left[\mathbf{u}_{1}, \mathbf{u}_{2}, . ., \mathbf{u}_{n}\right] \in \mathbb{R}^{4 \times n}$.
$\substack{\text { corarale } \\ \text { deforma }}$ The deformation of \mathbf{U} is driven by a LBS model with m bones. ${ }^{\text {ta }}$
17 \}
$\substack{\text { dinings } \\ \text { toimple }}$ The transformation of bone $j=1 . . m$ is $\mathbf{M}_{j} \in \mathbb{R}^{4 \times 4}$. Let $w_{i j}$ be the

$\substack{\begin{subarray}{c}{\text { virtral } 1 \\ \text { arpery } \\ \text { aprac }} }} \\{\text { i.e. }} \end{subarray} \sum_{j=1}^{m} w_{i j}=1, \forall i$. Non-negativity and sparseness have no effect
approac
Theouss
nis
an our formulation. Note that we use the LBS model for the sake of
$\substack{\text { eraliinin } \\ \text { iterative }}$ generality, but rigid binding is more common in practice, i.e. each
$\underset{\substack{\text { previou } \\ \text { of theal }}}{ }$ vertex is only assigned to one bone $\left(w_{i j} \in\{0,1\}\right)$. The skinned $\begin{aligned} & \text { lather } \\ & \text { also b }\end{aligned}$
$\underset{\substack{\text { storage } \\ \text { to speci }}}{\substack{\text { geometry } \\ \text { Owit }}} \mathrm{V}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right] \in \mathbb{R}^{4 \times n}$ is computed as:

Our:	

puted within the frame interval at typical frame rates of 24 fps (movie animation), 60fps (games) or 120fps (VR). Other tasks include various rendering steps, gameplay AI, collision detection, other types
of physics, etc. Simulation approaches are also not ideal in of physics, etc. Simulation approaches are also not ideal in terms of of physics, etc. Simulation approaches are also not ideal in terms of
simplicity. The rig may require constructing additional components
{

```
#include <Eigen/Core>
```

\#include <Eigen/Core>
\#include <Eigen/Dense>
\#include <Eigen/Dense>
\#include <Eigen/Sparse>
\#include <Eigen/Sparse>
\#include <iostream>
\#include <iostream>
void get_skinned_geometry(const Eigen::MatrixXd \& w,
void get_skinned_geometry(const Eigen::MatrixXd \& w,
const std::vector<Eigen::Matrix<double, 4, 4>> \& M,
const std::vector<Eigen::Matrix<double, 4, 4>> \& M,
const Eigen::MatrixXd \& U,
const Eigen::MatrixXd \& U,
Eigen::MatrixXd \& V)
Eigen::MatrixXd \& V)
V.resize(4, U.cols());
V.resize(4, U.cols());
for (int i = 0; i < U.cols(); i++) {
for (int i = 0; i < U.cols(); i++) {
for (int j = 0; j < w.cols(); j++) {
for (int j = 0; j < w.cols(); j++) {
V.col(i) += w(i, j) * M[i] * U.col(i);
V.col(i) += w(i, j) * M[i] * U.col(i);
}
}
}

```
    }
```

18

Direct Delta Mush Skinning and Variants

BINH HUY LE, SEED - Electronic Arts
JP LEWIS, Google Al

3.1 Original Delta Mush Model

This section revises the original Delta Mush (DM) model [Mancewicz et al. 2014] and presents notations to setup DM on top of a Linear Blend Skinning (LBS) model [Magnenat-Thalmann et al. 1988].

Assume that our character model is represented by a polygonal mesh with n vertices. The homogeneous position of vertex $i=$ $\underset{\substack{\text { fig. } 11 . ~ \\ \text { results } t}}{ } 1 . . n$ at the rest pose is $\mathbf{u}_{i} \in \mathbb{R}^{4}$, where the $4^{\text {th }}$ component is 1 . $\begin{gathered}\text { uivalent } \\ \text { d DDM }\end{gathered}$ ${ }_{\text {undera }} \begin{aligned} & \text { algorth } \\ & \text { und }\end{aligned}$ For convenience, we concatenate all vectors \mathbf{u}_{i} to a matrix $\mathrm{U}={ }^{\text {ttin the }}$ $\underset{\substack{\text { A signit } \\ \text { charate }}}{ }\left[\mathbf{u}_{1}, \mathbf{u}_{2}, . ., \mathbf{u}_{n}\right] \in \mathbb{R}^{4 \times n}$.
$\substack{\text { corarale } \\ \text { deforma }}$ The deformation of \mathbf{U} is driven by a LBS model with m bones. ${ }^{\text {ta }}$
}

```
#include <Eigen/Core>
```

\#include <Eigen/Core>
\#include <Eigen/Dense>
\#include <Eigen/Dense>
\#include <Eigen/Sparse>
\#include <Eigen/Sparse>
\#include <iostream>
\#include <iostream>
void get_skinned_geometry(const Eigen::MatrixXd \& w,
void get_skinned_geometry(const Eigen::MatrixXd \& w,
const std::vector<Eigen::Matrix<double, 4, 4>> \& M,
const std::vector<Eigen::Matrix<double, 4, 4>> \& M,
const Eigen::MatrixXd \& U,
const Eigen::MatrixXd \& U,
Eigen::MatrixXd \& V)
Eigen::MatrixXd \& V)
{
{
V.resize(4, U.cols());
V.resize(4, U.cols());
for (int i = 0; i < U.cols(); i++) {
for (int i = 0; i < U.cols(); i++) {
for (int j = 0; j < w.cols(); j++) {
for (int j = 0; j < w.cols(); j++) {
V.col(i) += w(i, j) *M[i] * U.col(i);
V.col(i) += w(i, j) *M[i] * U.col(i);
}
}
}
}
i should be j

```
                                    i should be j
```

 7 \}
 detoma
suinge
to mple The transformation of bone $j=1 . . m$ is $\mathbf{M}_{j} \in \mathbb{R}^{4 \times 4}$. Let $w_{i j}$ be the ${ }_{\substack{\text { rigings } \\ \text { virtual } 1}}$ weight of bone j on vertex i. The weights are required to be affine, ${ }_{\text {Variants }}^{\text {viort } 10 .}$ $\underset{\substack{\text { virtual } \\ \text { arperrac }}}{\text { i.e. }} \sum_{j=1}^{m} w_{i j}=1, \forall i$. Non-negativity and sparseness have no effect approcic
Teousis
nis
an our formulation. Note that we use the LBS model for the sake of
 $\substack{\text { preriou } \\ \text { of theal }}$

a vertex is only assigned to one bone $\left(w_{i j} \in\{0,1\}\right)$. The skinned | Major |
| :---: |
| culated |
| l.Other | $\underset{\substack{\text { storage } \\ \text { to speci }}}{\substack{\text { geometry } \\ \mathrm{V}}}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right] \in \mathbb{R}^{4 \times n}$ is computed as:

$$
\begin{gathered}
\substack{\text { tuantily } \\
\text { thenl } \\
\text { vesus t } \\
\text { Anturisis } \\
\text { gmailoot }}
\end{gathered} \quad \mathbf{v}_{i}=\sum_{j=1}^{m} w_{i j} \mathbf{M}_{j} \mathbf{u}_{i}, i=1 . . n
$$

mulation eftects are not justified when nearly the same effect can be produced with a cheaper method. It should be remembered that puted within the frame interval at typical frame rates of 24 fps (movie animation), 60 fps (games) or 120 fps (VR). Other tasks include various rendering steps, gameplay AI, collision detection, other types of physics, etc. Simulation approaches are also not ideal in terms of of physics, etc. Simulation approaches are also not ideal in terms of
simplicity. The rig may require constructing additional components

```
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include <iostream>
void get_skinned_geometry(const Eigen::MatrixXd & w,
const std::vector<Eigen::Matrix<double, 4, 4>> & M,
const Eigen::MatrixXd & U,
Eigen::MatrixXd & V)
    {
V.resize(4, U.cols());
for (int i = 0; i < U.cols(); i++) {
        for (int j = 0; j < w.cols(); j++) {
            V.col(i) += w(i, j) * M[i] * U.col(i);
        }
    }
}
```

import numpy as np
def get_skinned_geometry(w, M, U. $)$:
v = np.zeros((4, U.shape[1]))
for i in range(0, U.shape[1]):
for j in range(0, w.shape[1]):
$\mathrm{v}[:, \mathrm{i}]+=\mathrm{w}[\mathrm{i}, \mathrm{j}]$ * M[j] @ U[:, i]
return v
mulation eftects are not justitied when nearly the ${ }_{5}^{5}$ speed be produced with a cheaper method It should be remembered that be produced with a cheaper method. It should be remembered that
character deformation is just one of many things that must be comcharacter deformation is just one of many things that must be com-
puted within the frame interval at typical frame rates of 24 fps (movie puted within the frame interval at typical frame rates of 24fps (movie
animation), 60 fps (games) or 120fps (VR). Other tasks include various rendering steps, gameplay AI, collision detection, other types of physics, etc. Simulation approaches are also not ideal in terms of simplicity. The rig may require constructing additional components

```
    #include <Eigen/Core>
    #include <Eigen/Dense>
    #include <Eigen/Sparse>
    #include <iostream>
    void get_skinned_geometry(const Eigen::MatrixXd & w,
                                    const std::vector<Eigen::Matrix<double, 4, 4>> & M,
                                    const Eigen::MatrixXd & U,
                                    Eigen::MatrixXd & V)
    {
            V.resize(4, U.cols());
        for (int i = 0; i < U.cols(); i++) {
        for (int j = 0; j < w.cols(); j++) {
            V.col(i) += w(i, j) * M[i] * U.col(i);
        }
                                    i should be j
```

 This section revises the original Delta Mush (DM) model [Mancewicz
 et al. 2014] and presents notations to setup DM on top of a Linear
 Blend Skinning (LBS) model [Magnenat-Thalmann et al. 1988].
 Assume that our character model is represented by a polygonal
 mesh with \(n\) vertices. The homogeneous position of vertex \(i=\)

$\underset{\substack{\text { a signitit } \\ \text { charate }}}{ }\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right] \in \mathbb{R}^{4 \times n}$.
The deformation of \mathbf{U} is driven by a LBS model with m bones
$\substack{\begin{subarray}{c}{\text { deforma } \\ \text { usings } \\ \text { toimple }} }} \end{subarray}$ The transformation of bone $j=1 . . m$ is $\mathbf{M}_{j} \in \mathbb{R}^{4 \times 4}$. Let $w_{i j}$ be the
$\substack{\begin{subarray}{c}{\text { toimpl } \\ \text { rirging } \\ \text { virtual } 1} }} \end{subarray}$ weight of bone j on vertex i. The weights are required to be affiy
$\substack{\begin{subarray}{c}{\text { virtral } \\ \text { arpery } \\ \text { aproac }} }} \\{\text { i.e. }} \end{subarray} \sum_{j=1}^{m} w_{i j}=1, \forall i$. Non-negativity and sparseness have no e ct

eralizing
iterative
generality, but rigid binding is more common in practice e. each culated
l. Other

$\underset{\substack{\text { previou } \\ \text { of theal }}}{ }$ vertex is only assigned to one bone $\left(w_{i j} \in\{0,1\}\right)$ T skinned $\begin{aligned} & \text { lather } \\ & \text { also be } \\ & \text { lis }\end{aligned}$
$\underset{\substack{\text { storage } \\ \text { to speci }}}{\substack{\text { and }}}$ geometry $\mathbf{V}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, . ., \mathbf{v}_{n}\right] \in \mathbb{R}^{4 \times n}$ is computed as
to speciI
Ouality,
quat
quality,
fional
versus
ver

$$
\mathbf{v}_{i}=\sum_{j=1}^{m} w_{i j} \mathbf{M}_{j} \mathbf{u}_{i}, i=1 . . n
$$

simulation eftects are not justified when speed, be produced with a cheaper method It should be remembered than be produced with a cheaper method. It should be remembered that
character deformation is just one of many things that must be comcharacter deformation is just one of many things that must be com-
puted within the frame interval at typical frame rates of 24 fps (movie puted within the frame interval at typical frame rates of 24fps (movie
animation), 60 fps (games) or 120fps (VR). Other tasks include various rendering steps, gameplay AI, collision detection, other types of physics, etc. Simulation approaches are also not ideal in terms of of physics, etc. Simulation approaches are also not ideal in terms of
simplicity. The rig may require constructing additional components

Direct Delta Mush Skinning and Variants

BINH HUY LE，SEED－Electronic Arts
JP LEWIS，Google AI

3．1 Original Delta Mush Model
This section revises the original Delta Mush（DM）model［Mancewicz et al．2014］and presents notations to setup DM on top of a Linear Blend Skinning（LBS）model［Magnenat－Thalmann et al．1988］．

Assume that our character model is represented by a polygonal mesh with n vertices．The homogeneous position of vertex $i=$ $\underset{\substack{\text { fig．} 1.7 \\ \text { resutst }}}{ } 1 . . n$ at the rest pose is $\mathbf{u}_{i} \in \mathbb{R}^{4}$ ，where the $4^{\text {th }}$ component is 1 $\underset{ }{\substack{\text { algorith } \\ \text { undera }}}$ For convenience，we concatenate all vectors \mathbf{u}_{i} to a matrix $\mathrm{U}=$ $\underset{\substack{\text { A signit } \\ \text { charate }}}{ }\left[\mathbf{u}_{1}, \mathbf{u}_{2}, . ., \mathbf{u}_{n}\right] \in \mathbb{R}^{4 \times n}$ ．
$\left.\begin{array}{c}\text { social e } \\ \text { deforma }\end{array}\right\}$ The deformation of \mathbf{U} is driven by a LBS model with m bones．

\＃i

\＃i \＃i \＃

4 AN EIGENANALYSIS OF I_{5}

4．1 The Eigensystem of I_{5}

We will now show that the eigensystem of any energy expressed solely in terms of I_{5} can be written down in closed form．The I_{5} invariant can be written in several forms，

$$
\begin{equation*}
I_{5}=\|\mathbf{F a}\|_{2}^{2}=\mathbf{a}^{T} \mathbf{C a}=\operatorname{tr}(\mathbf{C A}) \tag{5}
\end{equation*}
$$

where $\mathrm{A}=\mathbf{a a}{ }^{T}$ and $\|\cdot\|_{2}^{2}$ denotes the squared Euclidean norm．The PK1 and Hessian in 3D are

$$
\begin{align*}
\frac{\partial I_{5}}{\partial \mathbf{F}} & =2 \mathbf{F A} \tag{6}\\
\frac{\partial^{2} I_{5}}{\partial \mathbf{f}^{2}} & =2\left[\begin{array}{lll}
\mathbf{A}_{00} \mathbf{I}_{3 \times 3} & \mathbf{A}_{01} \mathbf{I}_{3 \times 3} & \mathbf{A}_{02} \mathbf{I}_{3 \times 3} \\
\mathbf{A}_{10} \mathbf{I}_{3 \times 3} & \mathbf{A}_{11} \mathbf{I}_{3 \times 3} & \mathbf{A}_{11} \mathbf{I}_{3 \times 3} \\
\mathbf{A}_{20} \mathbf{I}_{3 \times 3} & \mathbf{A}_{21} \mathbf{I}_{3 \times 3} & \mathbf{A}_{22} \mathbf{I}_{3 \times 3}
\end{array}\right]=2 \mathbf{H}_{5}, \tag{7}
\end{align*}
$$

where $\mathbf{I}_{3 \times 3}$ is a 3×3 identity matrix，and $\mathbf{A}_{i j}$ is the (i, j) scalar entry of A．（Appendix A shows the matrix explicitly．）Since Eqn． 7 is constant in a，it is straightforward to state its eigensystem in closed form．In 3 D ，it contains three identical non－zero eigenvalues，$\lambda_{0,1,2}=2\|\mathbf{a}\|_{2}^{2}$ ， and since fiber directions are usually normalized，this simplifies

$\underset{\substack{\text { using g } \\ \text { toimple }}}{ }$ The transformation of bone $j=1 . . m$ is $\mathbf{M}_{j} \in \mathbb{R}^{4 \times 4}$ ．Let $w_{i j}$ be the $\underset{\substack{\text { riging } \\ \text { virtual } 1}}{ }$ weight of bone j on vertex i ．The weights are required to be affir $\substack{\begin{subarray}{c}{\text { virtrall } \\ \text { approac }} }} \\{\text { i．e．}} \end{subarray} \sum_{j=1}^{m} w_{i j}=1, \forall i$ ．Non－negativity and sparseness have no e ct neously
This
nis
nen
and $\substack{\text { eraliinin } \\ \text { iterative }}$ generality，but rigid binding is more common in practice e．each cid
 $\underset{\substack{\text { storage } \\ \text { to speci }}}{\substack{\text { geometry } \\ V}}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right] \in \mathbb{R}^{4 \times n}$ is computed as

1	$A_{-} i j=\left\{\begin{aligned} 1 & \text { if }(i, j) \in E \\ 2 & \text { otherwise }\end{aligned}\right.$
3	$D_{-} i i=\sum_{-} j A_{-} i j$
4	$L=D^{-1}(D-A)$
5	
6	where
7	
8	$E \in\{\mathbb{Z} \times \mathbb{Z}\}$
9	$A \in \mathbb{R} \wedge(n \times n)$
10	$n \in \mathbb{Z}$

$$
\begin{aligned}
A_{i, j} & = \begin{cases}1 & \text { if }(i, j) \in E \\
0 & \text { otherwise }\end{cases} \\
D_{i, i} & =\sum_{j} A_{i, j} \\
L & =D^{-1}(D-A)
\end{aligned}
$$

where

$$
\begin{aligned}
& E \in\{\mathbb{Z} \times \mathbb{Z}\} \\
& A \in \mathbb{R}^{n \times n} \\
& n \in \mathbb{Z}
\end{aligned}
$$

C++
Python

```
A_ij = { 1 if (i,j) E E
            0 otherwise
D_ii = \Sigma_j A_ij
    L = D'-1(D-A)
where
E \in{\mathbb{Z}\times\mathbb{Z}}
A}\in\mathbb{R}^(n\timesn
n}\in\mathbb{Z
*/
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include <iostream>
#include <set>
struct myExpressionResultType {
    Eigen::SparseMatrix<double> A;
    Eigen::SparseMatrix<double> D;
    Eigen::SparseMatrix<double> L;
    myExpressionResultType(const Ei
            const Eigen::SparseM
            const Eigen::SparseN
        :A(A),
        L(D),
        L(L)
        {}
};
```

MATLAB
LaTeX

```
function output \(=\) myExpression(E, \% output = myExpression(E, n)
```

```
A_ij={1 if (i,j) \in E
```

A_ij={1 if (i,j) \in E
0 otherwise
0 otherwise
A_ij = { 1 if (i,j) E E
0 otherwise
D_ii = \sum_j A_ij
L = D'1
where
D_ii = _j A_ij
L = D-1 (D-A)
where
E \in{\mathbb{Z}\times\mathbb{Z}}
A}\in\mathbb{R}^(n\timesn
n}\in\mathbb{Z
"""
E \in{\mathbb{Z XZZ}}
A \in\mathbb{R}^(n\timesn)
import numpy as np
n}\in\mathbb{Z
if nargin==0
warning('generating random
[E, n] = generateRandomData
import scipy.linalg
from scipy import sparse

```

```

end
function [E, n] = generateRando
n = randi(10);
E = [];
dim_2 = randi(10);
for i = 1:dim_2
E = [E;randi(10), randi
end
end
assert(size(E,2) == 2)
assert(numel(n) == 1);
Aij_0 = zeros(2,0);
Avals_0 = zeros(1,0);

```
daocumentctass[12pt]\{articLe\}
\usepackage \{mathdots \usepackage[bb=boondox] \{mathalfa\} lusepackage\{mathtools\} \usepackage\{amssymb\} \usepackage\{libertine\}
\DeclareMathOperator*\{\argmax\} \{arg \(\backslash\) DeclareMathOperator*\{\argmin\}\{arg \(\backslash\) \DeclareMath0perator*\{\argmin\}\{arg
lusepackage[paperheight=8in, paperwi، \usepackage[paperheight
\let\originalleft\left } \(\end{array}\)
\let\originalright\right }
\renewcommand\{\left\} \{\mathopen\{\}\ma \renewcommand \(\backslash \backslash\) eft \(\}\{\backslash\) mathopen \(\} \backslash\) ma
\renewcommand \(\{\backslash\) right \(\}\{\backslash a f t e r g r o u p \backslash e d\) \renewcommand\{\ri
\begin\{document\} } \(\end{array}\)
\begin\{document } \(\\{\text { \begin\{center\} } }\end{array}\)
\begin\{center\} }
\resizebox\{\textwidth\} \{!\}
\re
\begin\{minipage\}[c]\{\textwidth\} }
\begin\{align*\} }
\mathit \(\{\mathrm{A}\}\) _ \(\{\) mathit \(\{i\}, \backslash \operatorname{mathit}\{j\}\}\)
\(\backslash\) mathit \(\{A\}-\{\) matnit \(\{i\}, ~ \ m a t h i t\{j\}\}\)
\mathit \(\{\mathrm{D}\}\) _ \(\{\backslash\) mathit \(\{\mathrm{i}\}, \backslash\) mathit \(\{\mathrm{i}\}\}\) \&
\mathit \(\{L\} \&=\backslash \operatorname{mathit}\{D\} \wedge\{-1\} \backslash\) left
\mathit \(\{L\} \&=\backslash\) mathit \(\{D\} \wedge\{-1\} \backslash\) left
lintertext \(\{\) where \(\}\)
\intertext \(\{\) where \(\}\)
\mathit \(\{E\}\) \& \(\backslash i n \backslash\{\backslash\) mathbb \(\{Z\} \backslash\) time
\mathit \(\{\mathrm{A}\}\) \& \(\backslash i n \backslash\) mathbb \(\{R\} \wedge\{\) \math
\(\backslash\) mathit \(\{n\}\) \& \(\backslash i n \backslash\) mathbb \(\{Z\}\) \\
ไend\{align*\}
ไend\{minipage\}
\e

\section*{Related work: Markup languages}
- LaTeX [Goossens et al. 1994]
- Markdown [Gruber and Swartz 2004]
- AsciiMath [Jipsen 2005]
- MathML (V3C 2016]
```

1- \# Warning
The **gamma function** is defined for all complex numbers except the

 non-positive integers. For any positive integer $$n$$, $$\Gamma(n)=
 (n-1)!\quad$$.
 4 Derived by Daniel Bernoulli, for complex numbers with a positive real
part, the gamma function is defined via a convergent improper integra
\$
Gamma(z)=\int_0^\infty (^^{z-1} 権{-x}\,dx,
\quuad \Re(z)>0\

 .$$
 8 The notation $$
\Gamma (z)
$$ is due to Legendre. If the real part of the

 complex number $$z$$ is strictly positive ($$\Re (z)>0$$), then the
 integral converges absolutely, and is known as the Euler integral of
 the second kind. Using integration by parts, one sees that:
 1 0

11 $$
\begin{aligned}
 \Gamma(z+1)& & \int_0^\infty x^{z} e^{-x}\,dx \
```

```
 dx \
 &=\lim_{x\to \infty}\left(-\mp@subsup{x}{}{\wedge}z\mp@subsup{e}{}{\wedge{-x}\\right) - \left(-0^z}
 \mp@subsup{e}{}{\wedge{-0}\right) + z\int_0^\infty }\mp@subsup{x}{}{\wedge}{z-1} \mp@subsup{e}{}{\wedge}{-x}\,dx.
\end{aligned}
$$

```

\section*{Warning}

The gamma function is defined for all complex numbers except the non-positive integers. For any positive integer \(n, \Gamma(n)=(n-1)\) !

Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamm function is defined via a convergent improper integral:
\(\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x, \quad \Re(z)>0\)

The notation \(\Gamma(z)\) is due to Legendre. If the real part of the complex number \(z\) is strictly positive \((\Re(z)>0)\), then the integral converges absolutely, and is known as the Euler integral of the second kind. Using integration by parts, one sees that:

```

 = [-x\mp@subsup{e}{}{*}-\mp@subsup{e}{0}{\infty}}\mp@subsup{]}{0}{\infty}+\mp@subsup{\int}{0}{\infty
    ```


\section*{Related work: DSLs for graphics}
- [Perlin 1985]
- [Hanrahan and Lawson 1990]
- SafeGl [Ou and Pellacini 2010]
- Halide [Ragan-Kelley et al. 2012]
- VizGen [Yang et al. 2016]
- Simit [Kjolstad et al. 2016]
- Ebb [Bernstein et al. 2016]
- Opt [Devito et al. 2017]
- Slang [He et al. 2018]
- [Preussner 2018]
- Taichi [Hu et al. 2019]
- [Geisler et al. 2020]
- Penrose Ye et al. 2020]
- TEG [Bangaru et al. 2021]

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines


Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures
Yuanming hu, mit csail
YUANMING HU, MIT CSALL
TZU-MAO LI, MIT CSALL and UC Berkeley
LUKE ANDERSON, MII CSAAL
JONATHAN RAGAN-KELLELL, UC Berkely
FREDO DURAND, MIT CSALI


Halide
Taichi
[Hu et al. 2019]

\section*{Related work: Languages for numerical computing}
- YALMIP [Löfberg 2004]
- Fortress [Allen et al. 2005]
- APL [lverson 2007]
- BLAC [Spampinato and Püschel 2014]
- Julia [Bezanson et al. 2017]
- TACO [Kjolstad et al. 2017]
- GENO [Laue et al. 2019]


\section*{Related work: Languages for proof-checking}
- Agda [Norell 2007]
- Lean [de Moura et al. 2015]
- Coq [Team 2021]
```

theorem le.antisymm : }\forall{\textrm{a b : \mathbb{Z}, a }\leq\textrm{b}->\textrm{b}\leq\textrm{a}->\textrm{a}=\textrm{b}:
take a b : \mathbb{Z}, assume ((H1 : a \leq b) ((H2 : b \leq a),
obtain (n : N) (Hn : a + n = b), from le.elim H1,
obtain (m : N) (Hm : b + m = a), from le.elim H2,
have H3 : a + of_nat (n + m) = a + 0, from
... -- suppressed rest of the proof due to space limitations
have }\mp@subsup{H}{6}{}\mathrm{ : n = 0, from nat.eq_zero_of_add_eq_zero_right H5,
show a = b, from
calc
a = a + 0 : add_zero
... = a + n : H
···. = b : Hn
Lean example

```

IPLA combines conventional syntax with unambiguous execution


\(L_{s}=L_{f}+\lambda L_{K L}+\eta R\),
where
\(L_{K L}=K L\left(q_{\phi}(z \mid x, y, c) \| p_{\phi}(z \mid c\right.\)
(7) \(\qquad\)
) \(\langle I\rangle_{\mathrm{MIS}}=\sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} w_{i}\left(\overline{\mathbf{x}}_{i, j}\right) \frac{f\left(\overline{\mathbf{x}}_{i, j}\right)}{p_{i}\left(\overline{\mathbf{x}}_{i, j}\right)}\),
) \(\left\rangle_{\text {MIS }}=\sum_{i=1} \overline{n_{i}} \sum_{j=1} w_{i}\left(\overline{\mathbf{x}}_{i, j}\right) \frac{\bar{x}_{i, j}}{p_{i}\left(\overline{\mathbf{x}}_{i, j}\right)}\right.\),
\[
\min _{C} E_{\operatorname{sim}}
\]
\(\mathbb{D}_{i}=\sum_{j=i-M, \ldots, i-1} W_{j} \cdot\left(\mathbb{D}_{i}+f^{j \rightarrow i}\right)+W_{i} \cdot \mathbb{D}_{i}\)
\(\mathcal{L}_{\text {rec }}=\mathbb{E}_{\mathbf{p}_{i, j} \sim}\left[\left\|D\left(E_{M}\left(\mathbf{p}_{i, j}\right), E_{S}\left(\mathbf{p}_{i, j}\right)\right)-\mathbf{p}_{i, j}\right\|^{2}\right]\).
\(\min _{0 \leq \tau_{i} \leq \tau_{\max }} T(\tilde{\mathbf{x}}(\tau))+\eta \sum_{i} \tau_{i}^{p}\),
\(\mathcal{S}_{\mathrm{C}} \leq \frac{W 0 z_{\min }}{S}\).

\[
m_{\mathrm{v}}^{\mathrm{i}}=E_{O}\left[\sum_{\overrightarrow{\mathbf{x}} \in \mathrm{P}_{\mathbf{v}}^{\mathrm{P}, O}} \mu(\overrightarrow{\mathbf{x}})\right],
\]

\[
\langle I\rangle_{a, n} \approx \frac{f\left(\overline{\xi_{n}}\right) I_{a}\left(\overline{\xi_{n}}\right)}{n\left(\overline{\xi_{n}}\right)}
\]
\[
=\frac{1}{t^{2}} \int_{0}^{t} \int_{0}^{t}\left\langle\sigma_{\mu}\left(\mathbf{x}^{\prime}\right) \sigma_{\mu}\left(\mathbf{x}^{\prime \prime}\right)\right\rangle \mathrm{d} t^{\prime} \mathrm{d} t^{\prime \prime}
\]
\[
\max _{q_{1: T}, \dot{q}_{1: T}, \tau_{1: T}} \dot{x}_{T} \cdot \dot{y}_{T}
\]
\(\square\)
\[
\underset{\hat{\mathbf{w}}, \boldsymbol{\delta}}{\arg \min } \frac{1}{2}\|\boldsymbol{\delta}\|^{2} \quad \text { s.t. } \quad C(\hat{\mathbf{w}}+\boldsymbol{\delta})=0
\]
(14)
\[
=\frac{1}{2} \int_{\square}^{t} \int_{0}^{t} \operatorname{cov}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \mathrm{d} t^{\prime} \mathrm{d} t^{\prime \prime}
\]
\(\stackrel{\text { Eq. }}{\Rightarrow}(2)(2 g-1)(\varphi)=\frac{2}{\pi} \lim _{z \rightarrow \exp (i \varphi)} \mathfrak{R}(-i \log (i \alpha+2 \pi \mathcal{H}[d](z)))\)
\[
\begin{gathered}
\text { (7) } \\
\text { (9) } \\
\hline
\end{gathered}
\]
\[
\left.\begin{array}{l}
\int_{0} \operatorname{cov}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \mathrm{d} t^{\prime} \mathrm{d} t^{\prime \prime} . \\
\varphi(\mathbf{x})=\operatorname{atan} 2\left(\sum a_{j}(\mathbf{x}) \sin \left(\varphi_{j}\right), \sum a_{j}(\mathbf{x}) \cos \left(\varphi_{j}\right)\right) \\
B \\
C
\end{array}\right) \theta_{e}=K_{c}-\bar{K}_{c} . \quad \mathbb{E}_{I \sim \mathcal{D}}\left(\left\|\tau(I)-\tau\left(I_{\mathrm{gt}}\right)\right\|^{2}\right),
\] \(\varphi(\mathbf{x})=\operatorname{atan} 2\left(\sum_{j} a_{j}(\mathbf{x}) \sin \left(\varphi_{j}\right), \sum_{j} a_{j}(\mathbf{x}) \cos \left(\varphi_{j}\right)\right) \quad\) (9) \(\quad E_{1}(p, T)=\left\{\begin{array}{cc}0 & \text { for } p=p_{(i-1), T} \\ \infty & \text { for other } p^{\prime} \mathrm{s}\end{array}\right.\)

\(\Rightarrow g(\varphi)=\frac{1}{\pi} \arg \left(i \alpha+\lim _{z \rightarrow \exp (i \varphi)} 2 \pi \mathcal{H}[d](z)\right)+\frac{1}{2}\)
\[
\mathcal{E}_{l}(p)=\omega_{l}(L) \sum_{a \in N_{l}(\rho)}\left\|\bar{F}_{G_{i}}^{L}(p)-\bar{F}_{G_{j}}^{L}(p)\right\|^{2}+\left\|\bar{F}_{G_{i}}^{L}(q)-\bar{F}_{G_{j}}^{L}(q)\right\|^{2}
\]
\(\square\)
\[
\Delta \tau_{S}=1
\]
\[
\frac{\left\|\Lambda_{\mathrm{n}}\right\|}{\left\|\mathbf{B}_{\tau_{\max } \|}\right\|} d \tau
\]
\[
\left(16 \frac{\partial^{2} I_{1}}{\partial \mathbf{f}^{2}}=\frac{\partial \mathbf{r}}{\partial \mathbf{f}}=\frac{2}{\sigma_{1}+\sigma_{2}} \mathbf{t t}^{\top}\right.
\]
\(\mathbb{T}_{t}=\exp (t \log A) \exp (t \log S) \exp (t \log E)\), \(\tau\left(x^{\prime}, y^{\prime}, t\right)=\left(\frac{2}{t c}\right)^{4} \iiint_{\Omega}\)
\[
E_{\text {align }}\left(h, h^{i-1}, \underline{\mathcal{F}}\right)=\sum_{c \in \mathcal{C}(\underline{\mathcal{F}})} \operatorname{Flat}(c) \frac{A(c)}{A(\underline{\mathcal{F}})}\left(H(c, h)-\operatorname{Snap}\left(c, h^{i-1}\right)\right)^{2}
\]
\(\mathcal{L}_{t}\left(\mathcal{G}, \mathcal{D}_{t}\right)=\log \left(\mathcal{D}_{t}\left(r_{i-L}^{i}, \Delta_{i, l}(\mathbf{f})\right)\right)+\log \left(1-\mathcal{D}_{t}\left(r_{i-L}^{i}, \Delta_{i, l}(\mathbf{o})\right)\right)\)
\(\square\)
\(\mathcal{L}_{\ell_{1}}(\mathbf{G})=\|\mathrm{Y}-\mathrm{G}(\mathrm{X})\|_{1}\).
\(\square\)
\[
\text { (1) } d_{k}=\hat{d}-\gamma \Delta+\gamma \frac{2 \Delta(k-1)}{p-1} \text {. }
\]

\[
\left.\frac{\alpha}{4}\right) \frac{d(x)}{w(x)}+\frac{\alpha d^{3}(x)}{4 w^{3}(x)}+O(|w(x)|)
\]
\(\sum_{i j \in \eta_{p}} \omega_{i j}=-\Phi_{0}\left(\eta_{p}\right)\)
\(\sum_{i j \in \eta_{p}}\)
\(\mathrm{~s} \tilde{\mathbf{a}}=\alpha \tilde{\mathbf{p}}+\beta \tilde{\mathbf{q}}+(1-\alpha-\beta) \tilde{\mathbf{r}}\)
\(\square\)
\(\qquad\) \((n)+b(n) e(n-1)\)

(7) \(\left\|x_{0}-p_{i}\left(x_{0}\right)\right\|_{2}^{2} \cdot\left|1+c_{i}^{\top} d_{\text {sun }}\right|^{2}+\epsilon\)


> (13)
\(v i_{i}(\tau, v)=\exp \left(-\beta_{i}^{F} \max \left(\gamma-\beta_{i}^{T}, 0^{\circ}\right)\right)\)
\(v i_{r}(\tau, v)=\exp \left(-\beta_{r}^{F} \max \left(p x(\tau, v)-\beta_{r}^{T}, 0 p x\right)\right)\)

\section*{Analysis of all 1987 Equations at SIGGRAPH 2019}


Single-letter variables (98\%)

Single-letter variables (98\%)
\[
\begin{equation*}
\mathcal{P}^{*}=\underset{\{\mathcal{P}\}}{\arg \min } \sum_{i=1}^{N} \mathcal{L}_{\text {TASK }}\left(f_{\mathrm{ISP}}\left(\mathbf{I}_{i} ; \mathcal{P}\right), \mathbf{T}_{i}\right), \tag{1}
\end{equation*}
\]
\(C_{t}=\frac{\sum_{k} w_{t, k} \alpha_{t, k} C_{t, k}}{\sum_{k} w_{t, k} \alpha_{t, k}}\).
(8)
\(f_{\mathcal{M}}(\mathbf{x})=\sum_{i} w_{i} f\left(\mathbf{x} \mid \Theta_{i}\right)\)
\(\left.\mathbf{D}=\left[\begin{array}{cc}\mathbf{R}_{\boldsymbol{R}}(-\psi) & 0 \\ 0 & 1\end{array}\right]\left(\begin{array}{l}\hat{\mathbf{u}} \\ \hat{\psi}\end{array}\right]-\left[\begin{array}{l}\mathbf{u} \\ \psi\end{array}\right]\right)\).
\[
\begin{equation*}
\mathbf{s}=\left(\bar{\phi}^{T}, \omega^{T}, \mathbf{D}^{T}, \mathbf{I}^{T}\right)^{T} \tag{7}
\end{equation*}
\]
\(\bar{T}(\mathbf{x}, \mathbf{y})=e^{-\bar{\tau}(\mathbf{x}, \mathrm{y})}=e^{-\int_{0}^{y} \bar{\mu}_{\mathrm{t}}(\mathrm{x}-s \omega) \mathrm{d} s}\)
\(\vec{p}_{i}(t)=f\left(\vec{q}(t), \vec{r}_{i}, \ell\right)\)
\(\mathbf{L}(\theta, \phi)=\sum_{t \in \mathcal{T}}\left(\sum_{i \in C}\left\|\hat{R}_{i}^{t}-R_{i}^{t}\right\|_{1}+\lambda \delta\left(z^{t}\right)\right)\),

Single-letter variables (98\%)
\(\mathcal{P}^{*}=\underset{\{\mathcal{P}\}}{\arg \min } \sum_{i=1}^{N} \mathcal{L}_{\text {TASK }}\left(f_{\text {Isp }}\left(\mathbf{I}_{i} ; \mathcal{P}\right), \mathbf{T}_{i}\right)\),
\(C_{t}=\frac{\sum_{k} w_{t, k} \alpha_{t, k} C_{t, k}}{\sum_{k} w_{t, k} \alpha_{t, k}}\).
\(f_{\mathcal{M}}(\mathbf{x})=\sum_{i} w_{i} f\left(\mathbf{x} \mid \Theta_{i}\right)\)
\(\left.\mathbf{D}=\left[\begin{array}{cc}\mathbf{R}_{z}(-\psi) & 0 \\ 0 & 1\end{array}\right]\left(\begin{array}{l}\hat{u} \\ \hat{\psi}\end{array}\right]-\left[\begin{array}{l}\mathbf{u} \\ \psi\end{array}\right]\right)\).
\(\mathbf{s}=\left(\overline{\boldsymbol{\phi}}^{T}, \omega^{T}, \mathbf{D}^{T}, \mathbf{I}^{T}\right)^{T}\),
\(\bar{T}(\mathbf{x}, \mathbf{y})=e^{-\bar{\tau}(\mathbf{x}, \mathbf{y})}=e^{-\int_{0}^{y} \bar{\mu}_{\mathrm{t}}(\mathbf{x}-s \omega) \mathrm{d} s}\)
\(\vec{p}_{i}(t)=f\left(\vec{q}(t), \vec{r}_{i}, \ell\right)\)
\(\mathbf{L}(\theta, \phi)=\sum_{t \in \mathcal{T}}\left(\sum_{i \in C}\left\|\hat{R}_{i}^{t}-R_{i}^{t}\right\|_{1}+\lambda \delta\left(z^{t}\right)\right)\),

Single-letter variables (98\%)
\(\mathcal{P}^{*}=\underset{\{\mathcal{P}\}}{\arg \min } \sum_{i=1}^{N} \mathcal{L}_{\text {Task }}\left(f_{\text {ssp }}\left(\mathbf{I}_{i} ; \mathcal{P}\right), \mathbf{T}_{i}\right)\),
\(C_{t}=\frac{\sum_{k} w_{t, k} \alpha_{t, k} C_{t, k}}{\sum_{k} w_{t, k} \alpha_{t, k}}\).
\(f_{\mathcal{M}}(\mathbf{x})=\sum_{i} w_{i} f\left(\mathbf{x} \mid \Theta_{i}\right)\)
\(\left.\mathbf{D}=\left[\begin{array}{cc}\mathbf{R}_{z}(-\psi) & 0 \\ 0 & 1\end{array}\right]\left(\begin{array}{l}\hat{u} \\ \hat{\psi}\end{array}\right]-\left[\begin{array}{l}\mathbf{u} \\ \psi\end{array}\right]\right)\).
(8)
\(\vec{p}_{i}(t)=f\left(\vec{q}(t), \vec{r}_{i}, \ell\right)\)
\(\left.\left.\mathbf{L}(\theta, \phi)=\sum_{t \in \mathcal{T}}\left(\sum_{i \in C}| | \widehat{\hat{R}}_{i}^{t}\right]-R_{i}^{t} \|_{1}+\lambda \delta z^{t}\right)\right)\),

\section*{Variables in IOLA}

\section*{Variables in IOLA}
\[
\begin{aligned}
& \omega=A B C \\
& \hat{d}=x^{\top} \omega^{\top} \omega x \\
& \text { where } \\
& A \in \mathbb{R}^{\wedge}(3 \times n) \\
& B \in \mathbb{R}^{\wedge}(n \times m) \\
& C \in \mathbb{R}^{\wedge}(m \times 2) \\
& x \in \mathbb{R}^{2}
\end{aligned}
\]

\section*{Variables in IOLA}
- Single-letter identifiers are encouraged
\[
\begin{aligned}
& \omega=A B C \\
& \hat{d}=x^{\top} \omega^{\top} \omega x \\
& \text { where } \\
& A \in \mathbb{R}^{\wedge}(3 \times n) \\
& B \in \mathbb{R}^{\wedge}(n \times m) \\
& C \in \mathbb{R}^{\wedge}(m \times 2) \\
& x \in \mathbb{R}^{2}
\end{aligned}
\]

\section*{Variables in IOLA}
- Single-letter identifiers are encouraged
\[
\begin{aligned}
& \boldsymbol{\omega}=A B C \\
& \hat{\mathrm{~d}}=\mathrm{X}^{\top} \omega^{\top} \boldsymbol{\omega} \boldsymbol{\omega}
\end{aligned}
\]
- Juxtaposition is multiplication
```

where
A \in\mathbb{R}\wedge(3\timesn)
B \in R^^(n\timesm)
C \in\mathbb{R}^(m\times2)
x}\in\mp@subsup{\mathbb{R}}{}{2

```

\section*{Variables in IOLA}
- Single-letter identifiers are encouraged
\[
\begin{aligned}
& \boldsymbol{\omega}=A B C \\
& \hat{\mathbf{d}}=\mathbf{x}^{\top} \omega^{\top} \boldsymbol{\omega} \mathbf{x}
\end{aligned}
\]
- Juxtaposition is multiplication
- Unicode
```

where
A \in\mathbb{R}\wedge(3\timesn)
B \in \mathbb{R^}(n\timesm)
C}\in\mathbb{R}\wedge(m\times2
x}\in\mp@subsup{\mathbb{R}}{}{2

```

\section*{Variables in IOLA}
- Single-letter identifiers are encouraged
- Juxtaposition is multiplication
- Unicode
- Variables cannot be re-defined
\[
\begin{aligned}
& \omega=A B C \\
& \hat{d}=x^{\top} \omega^{\top} \omega x
\end{aligned}
\]
```

where
A \in\mathbb{R}^(3\timesn)
B}\in\mathbb{R}^(n\timesm
C}\in\mathbb{R}\wedge(m\times2
x}\in\mp@subsup{\mathbb{R}}{}{2

```

\section*{Variables in IOLA}
- Single-letter identifiers are encouraged
\[
\begin{aligned}
& \omega=A B C \\
& \hat{d}=x^{\top} \omega^{\top} \omega x
\end{aligned}
\]
- Juxtaposition is multiplication
- Unicode
```

where
A \in\mathbb{R}\wedge(3\timesn)
B \in R^^(n\timesm)
C}\in\mathbb{R}\wedge(m\times2
x}\in\mp@subsup{\mathbb{R}}{}{2

```
- Variables cannot be re-defined
- Compatible matrix and vector dimensions are statically checked (compile-time, not run-time).

\section*{Matrices in IPLA}

\section*{Matrices in IOLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.\mathrm{L}=\begin{array}{lc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& \mathrm{k} \in \mathbb{R}
\end{aligned}
\]
```

L = [ll
MT 0]
where
M \in\mathbb{R}^(m\timesn)
x\in\mathbb{R^n}
y\in\mathbb{R}^m

```

\section*{Matrices in IOLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.\mathrm{L}=\begin{array}{lc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& \mathrm{a} \in \mathbb{R} \\
& \mathrm{k} \in \mathbb{R}
\end{aligned}
\]
```

L = [ll M+yx
MT 0]
where
M \in\mathbb{R}^(m\timesn)
x\in\mathbb{R^n}
y\in\mathbb{R}^m

```

\section*{Matrices in IOLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.\mathrm{L}=\begin{array}{lc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& \mathrm{a} \in \mathbb{R} \\
& \mathrm{k} \in \mathbb{R}
\end{aligned}
\]
```

L = [$$
\begin{array}{ll}{\textrm{I}}&{M+yx}\\{MT}&{0}\end{array}
$$]
where
M \in\mathbb{R}^(m\timesn)
x\in\mathbb{R^n}
y\in\mathbb{R}^m

```

\section*{Matrices in IOLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.\mathrm{L}=\begin{array}{lc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& \mathrm{k} \in \mathbb{R}
\end{aligned}
\]
```

L = [ll
MT 0]
where
M \in\mathbb{R}^(m\timesn)
x\in\mathbb{R^n}
y\in\mathbb{R}^m

```

\section*{Matrices in IOLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.L=\begin{array}{lc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& k \in \mathbb{R}
\end{aligned}
\]
```

L = [lllll
MT 0]
where
M \in\mathbb{R}^(m\timesn)
x\in\mathbb{R^n}
y\in\mathbb{R}^m

```

\section*{Matrices in IOLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.L=\begin{array}{lc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& k \in \mathbb{R}
\end{aligned}
\]
```

L = [I] M+yxT
where
M\in\mathbb{R}^(m\timesn)
x\in\mathbb{R^n}
y\in\mathbb{R}^m

```

\section*{Matrices in IOLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.L=\begin{array}{lc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& k \in \mathbb{R}
\end{aligned}
\]
```

L=[I] M+yxT
where
M \in \mathbb{R^(m\timesn)}
x\in\mathbb{R^n}
y\in\mathbb{R}^m

```

\section*{Matrices in IOLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.\mathrm{L}=\begin{array}{lc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& \mathrm{k} \in \mathbb{R}
\end{aligned}
\]
```

L = [ll
MT 0]
where
M \in\mathbb{R}^(m\timesn)
x\in\mathbb{R^n}
y\in\mathbb{R}^m

```

\section*{Matrices in IPLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.L=\begin{array}{cc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& k \in \mathbb{R}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{L}=\left[\begin{array}{ll}
\mathrm{I} & M+\mathrm{yx} \mathrm{x}^{\top} \\
M^{\top} & 0
\end{array}\right] \\
& \text { where } \\
& M \in \mathbb{R}^{\wedge}(m \times n) \\
& x \in \mathbb{R}^{\wedge} \mathrm{n} \\
& y \in \mathbb{R}^{\wedge} m
\end{aligned}
\]
- Element-wise:
\[
\begin{aligned}
& L_{-} i j=M_{-} i j+7 y_{-} i \\
& \text { where } \\
& M \in \mathbb{R} \wedge(m \times n) \\
& y \in \mathbb{R} \wedge m
\end{aligned}
\]
\[
\begin{aligned}
& L_{-} i j=\left\{\begin{array}{l}
1 \\
0 \text { otherwise }(i, j) \in E \\
L_{-} i i=-\sum_{-}(j \text { for } j!=i) L_{-} i, j \\
\text { where } \\
E \in\{\mathbb{Z} \times \mathbb{Z}\} \\
L \in \mathbb{R}^{\wedge}(n \times n) \\
n \in \mathbb{Z}
\end{array}\right.
\end{aligned}
\]

\section*{Matrices in IPLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.\mathrm{L}=\begin{array}{ll}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& k \in \mathbb{R}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{L}=\left[\begin{array}{ll}
\mathrm{I} & M+\mathrm{yx} \mathrm{x}^{\top} \\
M^{\top} & 0
\end{array}\right] \\
& \text { where } \\
& M \in \mathbb{R}^{\wedge}(\mathrm{m} \times n) \\
& x \in \mathbb{R}^{\wedge} \mathrm{n} \\
& \mathrm{y} \in \mathbb{R}^{\wedge} \mathrm{m}
\end{aligned}
\]
- Element-wise:
\[
\begin{aligned}
& L_{-} i j=M_{-} i j+7 y_{-} i \\
& \text { where } \\
& M \in \mathbb{R} \wedge(m \times n) \\
& y \in \mathbb{R} \wedge m
\end{aligned}
\]
\[
\begin{aligned}
& L_{-} i j=\left\{\begin{array}{r}
1 \text { if }(i, j) \in E \\
0 \\
L_{0} \text { otherwise }
\end{array}\right. \\
& L_{-} i i=-\sum_{-}(j \text { for } j!=i) L_{-} i, j \\
& \text { where } \\
& E \in\{\mathbb{Z} \times \mathbb{Z}\} \\
& L \in \mathbb{R} \wedge(n \times n) \\
& n \in \mathbb{Z}
\end{aligned}
\]

\section*{Matrices in IPLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.L=\begin{array}{cc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& k \in \mathbb{R}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{L}=\left[\begin{array}{ll}
\mathrm{I} & M+\mathrm{yx} \mathrm{x}^{\top} \\
M^{\top} & 0
\end{array}\right] \\
& \text { where } \\
& M \in \mathbb{R}^{\wedge}(m \times n) \\
& x \in \mathbb{R}^{\wedge} \mathrm{n} \\
& y \in \mathbb{R}^{\wedge} m
\end{aligned}
\]
- Element-wise:
\[
\begin{aligned}
& L_{-} i j=M_{-} i j+7 y_{-} i \\
& \text { where } \\
& M \in \mathbb{R} \wedge(m \times n) \\
& y \in \mathbb{R} \wedge m
\end{aligned}
\]
\[
\begin{aligned}
& L_{-} i j=\left\{\begin{array}{l}
1 \\
0 \text { otherwise }(i, j) \in E \\
L_{-} i i=-\sum_{-}(j \text { for } j!=i) L_{-} i, j \\
\text { where } \\
E \in\{\mathbb{Z} \times \mathbb{Z}\} \\
L \in \mathbb{R}^{\wedge}(n \times n) \\
n \in \mathbb{Z}
\end{array}\right.
\end{aligned}
\]

\section*{Matrices in IPLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.L=\begin{array}{cc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& k \in \mathbb{R}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{L}=\left[\begin{array}{ll}
\mathrm{I} & M+\mathrm{yx} \mathrm{x}^{\top} \\
M^{\top} & 0
\end{array}\right] \\
& \text { where } \\
& M \in \mathbb{R}^{\wedge}(m \times n) \\
& x \in \mathbb{R}^{\wedge} \mathrm{n} \\
& y \in \mathbb{R}^{\wedge} m
\end{aligned}
\]
- Element-wise:
\[
\begin{aligned}
& L_{-} i j=M_{-} i j+7 y_{-} i \\
& \text { where } \\
& M \in \mathbb{R} \wedge(m \times n) \\
& y \in \mathbb{R} \wedge m
\end{aligned}
\]
\[
\begin{aligned}
& L_{-} i j=\left\{\begin{array}{r}
1 \\
0 \\
0 \text { otherwise }(i, j) \in E \\
L_{-} i i=-\sum_{-}(j \text { for } j!=i) L_{-} i, j \\
\text { where } \\
E \in\{\mathbb{Z} \times \mathbb{Z}\} \\
L \in \mathbb{R} \wedge(n \times n) \\
n \in \mathbb{Z}
\end{array}\right.
\end{aligned}
\]

\section*{Matrices in IPLA}
- 2D matrix definitions:
\[
\begin{aligned}
& \left.L=\begin{array}{cc}
2 a & 0 \\
3 \mathrm{k}+1
\end{array}\right] \\
& \text { where } \\
& a \in \mathbb{R} \\
& k \in \mathbb{R}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{L}=\left[\begin{array}{ll}
\mathrm{I} & M+\mathrm{yx} \mathrm{x}^{\top} \\
M^{\top} & 0
\end{array}\right] \\
& \text { where } \\
& M \in \mathbb{R}^{\wedge}(m \times n) \\
& x \in \mathbb{R}^{\wedge} \mathrm{n} \\
& y \in \mathbb{R}^{\wedge} m
\end{aligned}
\]
- Element-wise:
\[
\begin{aligned}
& L_{-} i j=M_{-} i j+7 y_{-} i \\
& \text { where } \\
& M \in \mathbb{R} \wedge(m \times n) \\
& y \in \mathbb{R} \wedge m
\end{aligned}
\]
\[
\begin{aligned}
& L_{-} i j=\left\{\begin{array}{r}
1 \\
0 \\
0 \text { otherwise }(i, j) \in E
\end{array}\right. \\
& L_{-} i i=-\sum_{-}(j \text { for } j!=i) L_{-} i, j \\
& \text { where } \\
& E \in\{\mathbb{Z} \times \mathbb{Z}\} \\
& L \in \mathbb{R} \wedge(n \times n) \\
& n \in \mathbb{Z}
\end{aligned}
\]

\section*{Externally defined functions (50\%)}

\section*{Externally defined functions (50\%)}
\[
\begin{equation*}
\mathbf{g}={\frac{\partial \mathbf{F}^{T}}{\partial \mathbf{u}}}^{T}: \mathbf{P}(\mathbf{F}) \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\mathcal{L}_{\text {relight }}=\mathbb{E}\left[w_{2} \cdot \mathcal{P}\left(I^{\mathrm{R}}, I^{\star}\right)\right] . \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
E\left(x, x^{t}, v^{t}\right)=\frac{1}{2} x^{T} M x-x^{T} M x^{p}+h^{2} W(x) . \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
E_{E^{\prime}}=\sum_{i \in I^{\prime}} \sum_{f \in F_{i}} \frac{A(f)}{A^{\prime}} \max \left(0, n_{f}^{i} \cdot d_{i}\right) \tag{2}
\end{equation*}
\]
\[
\begin{equation*}
K_{i j}=\sum_{\widehat{C} \in \overline{\mathcal{M}}} \int_{\mathbf{g}(\widehat{C})} \nabla \phi_{i}(\mathbf{x}) \cdot \nabla \phi_{j}(\mathbf{x}) \mathrm{d} \mathbf{x}, \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\varphi_{\mathcal{G} \rightarrow \mathcal{S}}=\max _{\mathbf{g} \in \mathcal{G}}\left[\min _{\mathbf{s} \in \mathcal{S}} \phi(\mathbf{s}, \mathbf{g})\right] . \tag{8}
\end{equation*}
\]
\(M_{i}=\mathcal{T}\left(I_{i}\right)\).
(3) \(\tilde{\chi}(x)=\frac{1}{2}+\left(\frac{1}{2}-\frac{\alpha}{4}\right) \frac{d(x)}{w(x)}+\frac{\alpha d^{3}(x)}{4 w^{3}(x)}+O(|w(x)|)\).

\section*{Externally defined functions (50\%)}
\[
\begin{equation*}
\mathrm{g}=\frac{\partial \mathbf{F}^{T}}{\partial \mathbf{u}}: \mathrm{P}(\mathbf{F}) \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\mathcal{L}_{\text {relight }}=\mathbb{E}\left[w_{2} \cdot \mathcal{P}\left(I^{\mathrm{R}}, I^{\star}\right)\right] . \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
E\left(x, x^{t}, v^{t}\right)=\frac{1}{2} x^{T} M x-x^{T} M x^{p}+h^{2} W(x) . \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
E_{E^{\prime}}=\sum_{i \in I^{\prime}} \sum_{f \in F_{i}} \frac{A(f)}{A^{\prime}} \max \left(0, n_{f}^{i} \cdot d_{i}\right) \tag{2}
\end{equation*}
\]
\[
\begin{equation*}
K_{i j}=\sum_{\widehat{C} \in \overline{\mathcal{M}}} \int_{\mathbf{g}(\widehat{C})} \nabla \phi_{i}(\mathbf{x}) \cdot \nabla \phi_{j}(\mathbf{x}) \mathrm{d} \mathbf{x}, \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\varphi_{\mathcal{G} \rightarrow \mathcal{S}}=\max _{\mathbf{g} \in \mathcal{G}}\left[\min _{\mathbf{s} \in \mathcal{S}} \phi(\mathbf{s}, \mathbf{g})\right] . \tag{8}
\end{equation*}
\]
\(M_{i}=\mathcal{T}\left(I_{i}\right)\).
(3) \(\tilde{\chi}(x)=\frac{1}{2}+\left(\frac{1}{2}-\frac{\alpha}{4}\right) \frac{d(x)}{w(x)}+\frac{\alpha d^{3}(x)}{4 w^{3}(x)}+O(|w(x)|)\).

\section*{Externally defined functions (50\%)}
\[
\begin{equation*}
\mathrm{g}=\frac{\partial \mathbf{F}^{T}}{\partial \mathbf{u}}: \mathrm{P}(\mathbf{F}) \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\mathcal{L}_{\text {relight }}=\mathbb{E}\left[w_{2} \cdot \mathcal{P}\left(I^{\mathrm{R}}, I^{\star}\right)\right] . \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
E\left(x, x^{t}, v^{t}\right)=\frac{1}{2} x^{T} M x-x^{T} M x^{p}+h^{2} \quad W(x) \quad \text { (3) } \quad E_{E^{\prime}}=\sum_{i \in I^{\prime}} \sum_{f \in F_{i}} \frac{A(f)}{A^{\prime}} \max \left(0, n_{f}^{i} \cdot d_{i}\right) \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
K_{i j}=\sum_{\widehat{C} \in \overline{\mathcal{M}}} \int_{\mathbf{g}(\widehat{C})} \nabla \phi_{i}(\mathbf{x}) \cdot \nabla \phi_{j}(\mathbf{x}) \mathrm{d} \mathbf{x}, \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\varphi_{\mathcal{G} \rightarrow \mathcal{S}}=\max _{\mathbf{g} \in \mathcal{G}}\left[\min _{\mathbf{s} \in \mathcal{S}} \phi(\mathbf{s}, \mathbf{g})\right] . \tag{8}
\end{equation*}
\]
\(M_{i}=\mathcal{T}\left(I_{i}\right)\).
(3) \(\tilde{\chi}(x)=\frac{1}{2}+\left(\frac{1}{2}-\frac{\alpha}{4}\right) \frac{d(x)}{w(x)}+\frac{\alpha d^{3}(x)}{4 w^{3}(x)}+O(|w(x)|)\).

\section*{Externally defined functions (50\%)}
\[
\begin{equation*}
\mathbf{g}=\frac{\partial \mathbf{F}^{T}}{\partial \mathbf{u}}: \mathrm{P}(\mathrm{~F}) \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\mathcal{L}_{\text {relight }}=\mathbb{E}\left[w_{2} \cdot \mathcal{P}\left(I^{\mathrm{R}}, I^{\star}\right)\right] . \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
E\left(x, x^{t}, v^{t}\right)=\frac{1}{2} x^{T} M x-x^{T} M x^{p}+h^{2} W(x) \quad \text { (3) } \quad E_{E^{\prime}}=\sum_{i \in I^{\prime}} \sum_{f \in F_{i}} \frac{A(f)}{A^{\prime}} \max \left(0, n_{f}^{i} \cdot d_{i}\right) \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
K_{i j}=\sum_{\widehat{C} \in \widehat{\mathcal{M}}} \int_{\mathbf{g}(\widehat{C})} \nabla \phi_{i}(\mathbf{x}) \cdot \phi_{\phi_{j}(\mathbf{x})} \mathrm{d} \mathbf{x}, \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\varphi_{\mathcal{G} \rightarrow \mathcal{S}}=\max _{\mathrm{g} \in \mathcal{G}}\left[\min _{\mathrm{s} \in \mathcal{S}} \phi(\mathrm{~s}, \mathrm{~g})\right] . \tag{8}
\end{equation*}
\]
\[
\begin{equation*}
M_{i}=\mathcal{T}\left(I_{i}\right) \tag{6}
\end{equation*}
\]
\[
\text { (3) } \tilde{\chi}(x)=\frac{1}{2}+\left(\frac{1}{2}-\frac{\alpha}{4}\right) \frac{d(x)}{w(x)}+\frac{\alpha d^{3}(x)}{4 w^{3}(x)}+O(|w(x)|) \text {. }
\]

Trigonometric functions (10\%)

\section*{Trigonometric functions (10\%)}
\[
\begin{align*}
p(\boldsymbol{x}, t) & =c_{i}(\boldsymbol{x}) \cos \omega_{i} t+d_{i}(\boldsymbol{x}) \sin \omega_{i} t  \tag{5}\\
& =\sqrt{c_{i}^{2}(\boldsymbol{x})+d_{i}^{2}(\boldsymbol{x})} \cos \left(\omega_{i} t+\varphi_{i}(\boldsymbol{x})\right) \tag{6}
\end{align*}
\]
\[
B_{i}=\left[\begin{array}{cc}
\cos \left(\omega_{i} T\right) & \sin \left(\omega_{i} T\right)  \tag{15}\\
-\sin \left(\omega_{i} T\right) & \cos \left(\omega_{i} T\right)
\end{array}\right] .
\]
\[
\begin{equation*}
E_{M}(\mathbf{R}, \mathbf{t})=\left\|\arcsin \left(\frac{\mathbf{q}^{\top} \mathbf{t}_{\times} \mathbf{R} \mathbf{p}}{\left\|\mathbf{t}_{\times} \mathbf{R} \mathbf{p}\right\|}\right)\right\|_{2} \tag{4}
\end{equation*}
\]
\[
\begin{align*}
W_{M} D_{I} & =W_{N}^{M}, \text { where } \\
\left(W_{N}^{M}\right)_{i, j} & =\frac{1}{2}\left(\frac{\mu^{M}\left(T_{\alpha}\right)}{\mu^{N}\left(T_{\alpha}\right)} \cot \alpha_{i j}^{N}+\frac{\mu^{M}\left(T_{\beta}\right)}{\mu^{N}\left(T_{\beta}\right)} \cot \beta_{i j}^{N}\right) . \tag{9}
\end{align*}
\]
\[
\begin{equation*}
c_{p}(\alpha, \epsilon)=\frac{K_{p} e \sec ^{2}(\alpha+\epsilon)}{d_{p} \sec ^{2}\left(\phi_{\alpha, \epsilon}\right)} \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
h(\varphi)=\frac{1}{\pi} \arctan \left(\Re \lambda_{0}+2 \mathfrak{R} \sum_{l=1}^{m} \lambda_{l} \exp (-i l \varphi)\right)+\frac{1}{2} . \tag{11}
\end{equation*}
\]
\[
\begin{equation*}
\alpha_{\max }=\tan ^{-1}\left(\frac{M w_{m}}{2 d_{f}+D_{e}}\right), \tag{4}
\end{equation*}
\]

\section*{Trigonometric functions (10\%)}
\[
\begin{align*}
p(\boldsymbol{x}, t) & =c_{i}(\boldsymbol{x}) \cos \omega_{i} t+d_{i}(\boldsymbol{x}) \sin \omega_{i} t  \tag{5}\\
& =\sqrt{c_{i}^{2}(\boldsymbol{x})+d_{i}^{2}(\boldsymbol{x})} \cos \left(\omega_{i} t+\varphi_{i}(\boldsymbol{x})\right) \tag{6}
\end{align*}
\]
\[
B_{i}=\left[\begin{array}{cc}
\cos \left(\omega_{i} T\right) & \sin \left(\omega_{i} T\right)  \tag{15}\\
-\sin \left(\omega_{i} T\right) & \cos \left(\omega_{i} T\right)
\end{array}\right] .
\]
\[
\begin{equation*}
p_{I}(r, t)=\frac{k^{2} \rho c D_{S}(t)}{4 \pi r} \cos \theta e^{-i k r} \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
h(\varphi)=\frac{1}{\pi} \arctan \left(\Re \lambda_{0}+2 \mathfrak{R} \sum_{l=1}^{m} \lambda_{l} \exp (-i l \varphi)\right)+\frac{1}{2} . \tag{11}
\end{equation*}
\]
\[
\begin{equation*}
E_{M}(\mathbf{R}, \mathbf{t})=\left\|\arcsin \left(\frac{\mathbf{q}^{\top} \mathbf{t}_{\times} \mathbf{R} \mathbf{p}}{\left\|\mathbf{t}_{\times} \mathbf{R} \mathbf{p}\right\|}\right)\right\|_{2} \tag{4}
\end{equation*}
\]
\[
\begin{align*}
W_{M} D_{I} & =W_{N}^{M}, \text { where } \\
\left(W_{N}^{M}\right)_{i, j} & =\frac{1}{2}\left(\frac{\mu^{M}\left(T_{\alpha}\right)}{\mu^{N}\left(T_{\alpha}\right)} \cot \alpha_{i j}^{N}+\frac{\mu^{M}\left(T_{\beta}\right)}{\mu^{N}\left(T_{\beta}\right)} \cot \beta_{i j}^{N}\right) . \tag{9}
\end{align*}
\]
\[
\begin{equation*}
c_{p}(\alpha, \epsilon)=\frac{K_{p} e \sec ^{2}(\alpha+\epsilon)}{d_{p} \sec ^{2}\left(\phi_{\alpha, \epsilon}\right)} \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\alpha_{\max }=\tan ^{-1}\left(\frac{M w_{m}}{2 d_{f}+D_{e}}\right) \tag{4}
\end{equation*}
\]

\section*{Trigonometric functions (10\%)}
\[
\begin{align*}
p(\boldsymbol{x}, t) & =c_{i}(\boldsymbol{x}) \cos \omega_{i} t+d_{i}(\boldsymbol{x}) \sin \omega_{i} t  \tag{5}\\
& =\sqrt{c_{i}^{2}(\boldsymbol{x})+d_{i}^{2}(\boldsymbol{x})} \cos \left(\omega_{i} t+\varphi_{i}(\boldsymbol{x})\right) \tag{6}
\end{align*}
\]
\[
B_{i}=\left[\begin{array}{cc}
\cos \left(\omega_{i} T\right) & \sin \left(\omega_{i} T\right)  \tag{15}\\
-\sin \left(\omega_{i} T\right) & \cos \left(\omega_{i} T\right)
\end{array}\right] .
\]
\[
\begin{equation*}
p_{I}(r, t)=\frac{k^{2} \rho c D_{S}(t)}{4 \pi r} \cos \theta e^{-i k r} \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
h(\varphi)=\frac{1}{\pi} \arctan \left(\Re \lambda_{0}+2 \Re \sum_{l=1}^{m} \lambda_{l} \exp (-i l \varphi)\right)+\frac{1}{2} . \tag{11}
\end{equation*}
\]
\[
\begin{equation*}
E_{M}(\mathbf{R}, \mathbf{t})=\left\|\arcsin \left(\frac{\mathbf{q}^{\top} \mathbf{t}_{\times} \mathbf{R} \mathbf{p}}{\left\|\mathbf{t}_{\times} \mathbf{R} \mathbf{p}\right\|}\right)\right\|_{2} \tag{4}
\end{equation*}
\]
\[
\begin{align*}
W_{M} D_{I} & =W_{N}^{M}, \text { where } \\
\left(W_{N}^{M}\right)_{i, j} & =\frac{1}{2}\left(\frac{\mu^{M}\left(T_{\alpha}\right)}{\mu^{N}\left(T_{\alpha}\right)} \cot \alpha_{i j}^{N}+\frac{\mu^{M}\left(T_{\beta}\right)}{\mu^{N}\left(T_{\beta}\right)} \cot \beta_{i j}^{N}\right) . \tag{9}
\end{align*}
\]
\[
\begin{equation*}
c_{p}(\alpha, \epsilon)=\frac{K_{p} e \sec ^{2}(\alpha+\epsilon)}{d_{p} \sec ^{2}\left(\phi_{\alpha, \epsilon}\right)} \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\alpha_{\max }=\tan ^{-1}\left(\frac{M w_{m}}{2 d_{f}+D_{e}}\right), \tag{4}
\end{equation*}
\]

\section*{Trigonometric functions (10\%)}
\[
\begin{align*}
p(\boldsymbol{x}, t) & =c_{i}(\boldsymbol{x}) \cos \omega_{i} t+d_{i}(\boldsymbol{x}) \sin \omega_{i} t  \tag{5}\\
& =\sqrt{c_{i}^{2}(\boldsymbol{x})+d_{i}^{2}(\boldsymbol{x})} \cos \left(\omega_{i} t+\varphi_{i}(\boldsymbol{x})\right) \tag{6}
\end{align*}
\]
\[
B_{i}=\left[\begin{array}{cc}
\cos \left(\omega_{i} T\right) & \sin \left(\omega_{i} T\right)  \tag{15}\\
-\sin \left(\omega_{i} T\right) & \cos \left(\omega_{i} T\right)
\end{array}\right] .
\]
\[
\begin{equation*}
p_{I}(r, t)=\frac{k^{2} \rho c D_{S}(t)}{4 \pi r} \cos \theta e^{-i k r} \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
h(\varphi)=\frac{1}{\pi} \Longleftrightarrow \arctan \left(\Re \lambda_{0}+2 \Re \sum_{l=1}^{m} \lambda_{l} \exp (-i l \varphi)\right)+\frac{1}{2} . \tag{11}
\end{equation*}
\]
\[
\begin{equation*}
E_{M}(\mathbf{R}, \mathbf{t})=\left\|\arcsin \left(\frac{\mathbf{q}^{\top} \mathbf{t}_{\times} \mathbf{R} \mathbf{p}}{\left\|\mathbf{t}_{\times} \mathbf{R} \mathbf{p}\right\|}\right)\right\|_{2} \tag{4}
\end{equation*}
\]
\[
\begin{align*}
W_{M} D_{I} & =W_{N}^{M}, \text { where } \\
\left(W_{N}^{M}\right)_{i, j} & =\frac{1}{2}\left(\frac{\mu^{M}\left(T_{\alpha}\right)}{\mu^{N}\left(T_{\alpha}\right)} \sqrt[\cot \alpha_{i j}^{N}]{ }+\frac{\mu^{M}\left(T_{\beta}\right)}{\mu^{N}\left(T_{\beta}\right)} \cot \beta_{i j}^{N}\right) . \tag{9}
\end{align*}
\]
\[
\begin{equation*}
c_{p}(\alpha, \epsilon)=\frac{K_{p} e \sec ^{2}(\alpha+\epsilon)}{d_{p} \sec ^{2}\left(\phi_{\alpha, \epsilon}\right)} \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\alpha_{\max }=\tan ^{-1}\left(\frac{M w_{m}}{2 d_{f}+D_{e}}\right), \tag{4}
\end{equation*}
\]

Functions in IPLA

Functions in IOLA
- Externally defined functions
\[
\begin{aligned}
& a=f(2)+g() \\
& \text { where } \\
& f \in \mathbb{R} \rightarrow \mathbb{R}^{\wedge}(3 \times 3) \\
& g \in \varnothing \rightarrow \mathbb{R}^{\wedge}(3 \times 3)
\end{aligned}
\]

\section*{Functions in IOLA}
- Externally defined functions
\[
\begin{aligned}
& a=f(2)+g() \\
& \text { where } \\
& f \in \mathbb{R} \rightarrow \mathbb{R}^{\wedge}(3 \times 3) \\
& g \in \varnothing \rightarrow \mathbb{R}^{\wedge}(3 \times 3)
\end{aligned}
\]
- Built-in Functions
- Directly used
- Import from built-in libraries:
trigonometric and linearalgebra

\section*{Functions in IOLA}
- Externally defined functions
\[
\begin{aligned}
& a=f(2)+g() \\
& \text { where } \\
& f \in \mathbb{R} \rightarrow \mathbb{R}^{\wedge}(3 \times 3) \\
& g \in \varnothing \rightarrow \mathbb{R}^{\wedge}(3 \times 3)
\end{aligned}
\]
- Built-in Functions
- Directly used
- Import from built-in libraries:
trigonometric and linearalgebra

\section*{Summation (23\%)}

\section*{Summation (23\%)}
\[
\begin{equation*}
k_{t}(x, y):=\frac{e^{-d(x, y)^{2} / 4 t}}{(4 \pi t)^{n / 2}} j(x, y)^{-1 / 2}\left(1+\sum_{i=1}^{\infty} t^{i} \Phi_{i}(x, y)\right) . \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
L_{s}=\sum_{t}\left\|q_{\lambda}^{t}-q_{\lambda}^{t-1}\right\|_{2}^{2} \tag{7}
\end{equation*}
\]
\[
\begin{equation*}
\varphi_{i j_{a}}:=\sum_{p=0}^{a-1} \tilde{\theta}_{i}^{j_{p}, j_{p+1}} . \tag{8}
\end{equation*}
\]
\[
\begin{equation*}
L_{r}=\sum_{t} \sum_{k}\left\|\Pi q_{k}^{t}-u_{k}^{t}\right\|_{2}^{2} c_{k}^{t}, \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
W_{p}\left(f_{0}, f_{1}\right)=\min _{\mathbf{P}} \sum_{i, j} c\left(x_{i}, y_{j}\right) P_{i, j} \tag{9}
\end{equation*}
\]
\[
R=\sum_{i=1}^{k}\left\|h_{i}^{\prime}-h_{i}\right\|_{2}^{2}+\sum_{i=1}^{k} \sum_{j=i+1}^{k}\left\|h_{i, j}^{\prime}-h_{i, j}\right\|_{2}^{2},
\]
\[
\begin{equation*}
e \cdot k_{0}+\sum_{j=1}^{4} k_{j} \cdot e^{j}, \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\hat{\boldsymbol{\alpha}}_{p}=\sum_{i} w_{p i} \hat{\boldsymbol{\alpha}}_{i} . \tag{4}
\end{equation*}
\]

\section*{Summation (23\%)}
\[
\begin{equation*}
k_{t}(x, y):=\frac{e^{-d(x, y)^{2} / 4 t}}{(4 \pi t)^{n / 2}} j(x, y)^{-1 / 2}\left(1+\sum_{i=1}^{\infty} t^{i} \Phi_{i}(x, y)\right) . \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
L_{s}=\sum_{t}\left\|q_{\lambda}^{t}-q_{\lambda}^{t-1}\right\|_{2}^{2}, \tag{7}
\end{equation*}
\]
\[
\begin{equation*}
\varphi_{i j_{a}}:=\sum_{p=0}^{a-1} \tilde{\theta}_{i}^{j_{p}, j_{p+1}} . \tag{8}
\end{equation*}
\]
\[
\begin{equation*}
L_{r}=\sum_{t} \sum_{k}\left\|\Pi q_{k}^{t}-u_{k}^{t}\right\|_{2}^{2} c_{k}^{t}, \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
W_{p}\left(f_{0}, f_{1}\right)=\min _{\mathbf{P}}\left[\sum_{i, j} c\left(x_{i}, y_{j}\right) P_{i, j}\right. \tag{9}
\end{equation*}
\]
\[
R=\sum_{i=1}^{k}\left\|h_{i}^{\prime}-h_{i}\right\|_{2}^{2}+\sum_{i=1}^{k} \sum_{j=i+1}^{k}\left\|h_{i, j}^{\prime}-h_{i, j}\right\|_{2}^{2}
\]
\[
\begin{equation*}
e \cdot k_{0}+\sum_{j=1}^{4} k_{j} \cdot e^{j}, \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\hat{\boldsymbol{\alpha}}_{p}=\sum_{i} w_{p i} \hat{\boldsymbol{\alpha}}_{i} . \tag{44}
\end{equation*}
\]

\section*{Summation (23\%)}
\[
\begin{equation*}
k_{t}(x, y):=\frac{e^{-d(x, y)^{2} / 4 t}}{(4 \pi t)^{n / 2}} j(x, y)^{-1 / 2}\left(1+\sum_{i=1}^{\infty} t^{i} \Phi_{i}(x, y)\right) . \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
L_{s}=\sum_{t}\left\|q_{\lambda}^{t}-q_{\lambda}^{t-1}\right\|_{2}^{2}, \tag{7}
\end{equation*}
\]
\[
\begin{equation*}
\varphi_{i j_{a}}:=\sum_{p=0}^{a-1} \tilde{\theta}_{i}^{j_{p}, j_{p+1}} . \tag{8}
\end{equation*}
\]
\[
\begin{equation*}
L_{r}=\sum_{t} \sum_{k}\left\|\Pi q_{k}^{t}-u_{k}^{t}\right\|_{2}^{2} c_{k}^{t}, \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
W_{p}\left(f_{0}, f_{1}\right)=\min _{\mathbf{P}}\left[\sum_{i, j} c\left(x_{i}, y_{j}\right) P_{i, j}\right. \tag{9}
\end{equation*}
\]
\[
R=\sum_{i=1}^{k}\left\|h_{i}^{\prime}-h_{i}\right\|_{2}^{2}+\sum_{i=1}^{k} \sum_{j=i+1}^{k}\left\|h_{i, j}^{\prime}-h_{i, j}\right\|_{2}^{2},
\]
\[
\begin{equation*}
e \cdot k_{0}+\sum_{j=1}^{4} k_{j} \cdot e^{j}, \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\hat{\boldsymbol{\alpha}}_{p}=\sum_{i} w_{p i} \hat{\boldsymbol{\alpha}}_{i} . \tag{44}
\end{equation*}
\]

\section*{Summation (23\%)}
\[
\begin{equation*}
k_{t}(x, y):=\frac{e^{-d(x, y)^{2} / 4 t}}{(4 \pi t)^{n / 2}} j(x, y)^{-1 / 2}\left(1+\sum_{i=1}^{\infty} t^{i} \Phi_{i}(x, y)\right) \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
L_{s}=\sum_{t}\left\|q_{\lambda}^{t}-q_{\lambda}^{t-1}\right\|_{2}^{2} \tag{7}
\end{equation*}
\]
\[
\begin{equation*}
\varphi_{i j_{a}}:=\sum_{p=0}^{a-1} \tilde{\theta}_{i}^{j_{p}, j_{p+1}} . \tag{8}
\end{equation*}
\]
\[
\begin{equation*}
L_{r}=\sum_{t} \sum_{k}\left\|\Pi q_{k}^{t}-u_{k}^{t}\right\|_{2}^{2} c_{k}^{t}, \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
W_{p}\left(f_{0}, f_{1}\right)=\min _{\mathbf{P}} \sum_{i, j} c\left(x_{i}, y_{j}\right) P_{i, j} \tag{9}
\end{equation*}
\]
\[
R=\sum_{i=1}^{k}\left\|h_{i}^{\prime}-h_{i}\right\|_{2}^{2}+\sum_{i=1}^{k} \sum_{j=i+1}^{k}\left\|h_{i, j}^{\prime}-h_{i, j}\right\|_{2}^{2}
\]
\[
\begin{equation*}
e \cdot k_{0}+\sum_{j=1}^{4} k_{j} \cdot e^{j}, \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\hat{\boldsymbol{\alpha}}_{p}=\sum_{i} w_{p i} \hat{\boldsymbol{\alpha}}_{i} . \tag{44}
\end{equation*}
\]

\section*{Summation is ambiguous}

\section*{Summation is ambiguous}
\[
\sum_{c_{a b+a}}
\]

\section*{Summation is ambiguous}
\[
\sum_{a} a b_{i}+c \ll \sum_{\left(\sum_{1}, b_{k}+c\right)}^{\left(\sum_{a}, b_{2}\right)+c}
\]

\section*{Summation is ambiguous}



\section*{Complex summation formulas from SIGGRAPH 2019}

\section*{Complex summation formulas from SIGGRAPH 2019}
\[
\begin{aligned}
L_{\text {total }}= & \sum_{\left(I^{S}, I^{L}, I^{L^{\prime}}\right) \in \mathcal{A}} L_{\text {rend }}\left(I^{S}, I^{L}\right)+L_{\text {adjust_rend }}\left(I^{S}, I^{L^{\prime}}\right) \\
& +w_{1} L_{\text {smooth }}(\mathbb{D})
\end{aligned}
\]
\[
\langle F\rangle^{\mathrm{CV}}=\langle F\rangle+\sum_{i=1}^{K} \gamma_{i}\left(G_{i}-\left\langle G_{i}\right\rangle\right)
\]
\[
\begin{equation*}
=\sum_{i=1}^{K} \gamma_{i} G_{i}+\langle F\rangle-\sum_{i=1}^{K} \gamma_{i}\left\langle G_{i}\right\rangle \tag{14}
\end{equation*}
\]
\[
C_{\mathbf{v}_{1}, \mathbf{v}_{2}}^{\mathbf{i}_{1}, \mathbf{i}_{2}} \approx \frac{1}{N} \sum_{n=1}^{N} u_{\mathbf{v}_{1}}^{\mathbf{i}_{1}, O^{n}} \cdot u_{\mathbf{v}_{2}}^{\mathbf{i}_{2}, O^{n *}}-m_{\mathbf{v}_{1}}^{\mathbf{i}_{1}} \cdot m_{\mathbf{v}_{2}}^{\mathbf{i}_{2}} *
\]
\[
\begin{equation*}
\tilde{u}(\boldsymbol{x}, k)=\sum_{j} a_{j k} F_{k}\left(\boldsymbol{x}-\boldsymbol{y}_{j}, k\right)+u_{\mathrm{in}}(\boldsymbol{x}, k) \tag{22}
\end{equation*}
\]
\[
\begin{equation*}
=-\sum_{j} a_{j k} \frac{i}{4} H_{0}^{(2)}\left(k\left\|\boldsymbol{x}-\boldsymbol{y}_{j}\right\|\right)+u_{\mathrm{in}}(\boldsymbol{x}, k) \tag{23}
\end{equation*}
\]
\[
\begin{array}{ll}
\min _{\mathbf{a}} & \left\|\ddot{\mathbf{q}}_{\mathbf{d}}(\mathbf{u})-\ddot{\mathbf{q}}(\mathbf{a})\right\|^{2}+w_{\mathrm{reg}}\|\mathbf{a}\|^{2} \\
\text { subject to } & \mathbf{M} \ddot{\mathbf{q}}+\mathbf{c}=\sum_{m} \mathbf{J}_{m}^{\top} \mathbf{f}_{m}\left(a_{m}\right)+\mathbf{J}_{\mathbf{c}}^{\top} \mathbf{f}_{\mathrm{c}}+\tau_{\text {ext }} \tag{13}
\end{array}
\]
\[
\begin{align*}
& \mathcal{E}_{\text {symm }} \approx \sum_{i}\left[\cos \theta\left(p_{i}-q_{i}\right) \cdot n_{i}+\right. \\
&\left.\cos \theta\left(\tilde{a} \times\left(p_{i}+q_{i}\right)\right) \cdot n_{i}+t \cdot n_{i}\right]^{2} \\
&= \sum_{i} \cos ^{2} \theta\left[\left(p_{i}-q_{i}\right) \cdot n_{i}+\right. \\
&\left.\quad\left(\left(p_{i}+q_{i}\right) \times n_{i}\right) \cdot \tilde{a}+n_{i} \cdot \tilde{t}\right]^{2}, \tag{9}
\end{align*}
\]
\[
\begin{array}{r}
\mathcal{E}_{\text {two-plane }}=\sum_{i}\left[\left(\mathrm{R}_{i}-\mathrm{R}^{-1} q_{i}+t\right) \cdot\left(\mathrm{R} n_{p, i}\right)\right]^{2}+  \tag{14}\\
\\
{\left[\left(\mathrm{R} p_{i}-\mathrm{R}^{-1} q_{i}+t\right) \cdot\left(\mathrm{R}^{-1} n_{q, i}\right)\right]^{2} .}
\end{array}
\]
\[
\begin{equation*}
f_{\mathrm{s}, \mathrm{~g}}(\mathbf{x})=\sum_{i} a_{i} \phi\left(\mathbf{x}, \mathbf{x}_{i}\right)+\sum_{i} \mathbf{b}_{i}^{T} D^{0,1} \phi\left(\mathbf{x}, \mathbf{x}_{i}\right)+\mathbf{c}^{T} \mathbf{x}+d \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
L\left(\hat{x}, x_{\Gamma}\right)=\sum_{j \in[1, s]}\left(E_{j}\left(x_{j}\right)+\frac{1}{2}\left\|z_{j}-R_{\Gamma_{j}} x_{\Gamma}\right\|_{K_{j}}^{2}\right) . \tag{5}
\end{equation*}
\]
\[
\begin{align*}
& \Sigma_{J}=\left[\breve{q}_{J}\right]^{-1}=\left[\sum_{i} \alpha_{i} \breve{q}_{i}\right]^{-1}=\left(\sum_{i} \alpha_{i} \Sigma_{i}^{-1}\right)^{-1}, \\
& \mu_{J}=\Sigma_{J}\left(\sum_{i} \alpha_{i} \bar{q}_{i}\right)=\left(\sum_{i} \alpha_{i} \Sigma_{i}^{-1}\right)^{-1}\left(\sum_{i} \alpha_{i} \Sigma_{i}^{-1} \mu_{i}\right), \tag{13}
\end{align*}
\]

\section*{Complex summation formulas from SIGGRAPH 2019}

\[
\begin{align*}
\langle F\rangle^{\mathrm{cv}} & =\langle F\rangle+\sum_{i=1}^{K} \gamma_{i}\left(G_{i}-\left\langle G_{i}\right\rangle\right) \\
& =\sum_{i=1}^{K} \gamma_{i} G_{i}+\langle F\rangle-\sum_{i=1}^{K} \gamma_{i}\left\langle G_{i}\right\rangle \tag{14}
\end{align*}
\]
\[
C_{\mathrm{v}_{1}, v_{2}}^{\mathrm{i}_{1}, i_{2}} \approx \frac{1}{N} \sum_{n=1}^{N} u_{\mathrm{v}_{1}}^{\mathrm{i}_{1}, O^{n}} \cdot u_{\mathrm{v}_{2}}^{\mathrm{i}_{2}, O^{n *}}-m_{\mathrm{v}_{1}}^{\mathrm{i}_{1}} \cdot m_{\mathrm{v}_{2}}^{\mathrm{i}_{2}} * .
\]
\[
\begin{equation*}
\tilde{u}(\boldsymbol{x}, k)=\sum_{j} a_{j k} F_{k}\left(\boldsymbol{x}-\boldsymbol{y}_{j}, k\right)+u_{\text {in }}(\boldsymbol{x}, k) \tag{22}
\end{equation*}
\]
\[
\begin{equation*}
=-\sum_{j} a_{j k} \frac{i}{4} H_{0}^{(2)}\left(k\left\|\boldsymbol{x}-\boldsymbol{y}_{j}\right\|\right)+u_{\text {in }}(\boldsymbol{x}, k) . \tag{23}
\end{equation*}
\]
\[
\begin{array}{ll}
\min _{\mathbf{a}} & \left\|\ddot{\mathbf{q}}_{\mathrm{d}}(\mathbf{u})-\ddot{\mathbf{q}}(\mathbf{a})\right\|^{2}+w_{\text {reg }}\|\mathbf{a}\|^{2} \\
\text { subject to } & \mathbf{M} \ddot{\mathbf{q}}+\mathbf{c}=\sum_{m} \mathbf{J}_{m}^{\top} \mathbf{f}_{m}\left(a_{m}\right)+\mathbf{J}_{\mathbf{c}}^{\top} \mathbf{f}_{\mathbf{c}}+\tau_{\mathrm{ext}} \tag{13}
\end{array}
\]
\[
\begin{aligned}
& \mathcal{E}_{\text {symm }} \approx \sum_{i}\left[\begin{array}{l}
\cos \theta\left(p_{i}-q_{i}\right) \cdot n_{i}+ \\
\\
\left.\quad \cos \theta\left(\tilde{a} \times\left(p_{i}+q_{i}\right)\right) \cdot n_{i}+t \cdot n_{i}\right]^{2}
\end{array}\right. \\
&=\sum_{i} \cos ^{2} \theta\left[\left(p_{i}-q_{i}\right) \cdot n_{i}+\right. \\
&\left.\quad\left(\left(p_{i}+q_{i}\right) \times n_{i}\right) \cdot \tilde{a}+n_{i} \cdot \tilde{t}\right]^{2},
\end{aligned}
\]
\[
\mathcal{E}_{t w o-p l a n e}=\sum_{i}\left[\left(\mathrm{R} p_{i}-\mathrm{R}^{-1} q_{i}+t\right) \cdot\left(\mathrm{R} n_{p, i}\right)\right]^{2}+
\]
\[
\left[\left(\mathrm{R} p_{i}-\mathrm{R}^{-1} q_{i}+t\right) \cdot\left(\mathrm{R}^{-1} n_{q, i}\right)\right]^{2} .
\]
\[
\begin{equation*}
f_{\mathrm{s}, \mathbf{g}}(\mathbf{x})=\sum_{i} a_{i} \phi\left(\mathbf{x}, \mathbf{x}_{i}\right)+\sum_{i} \mathbf{b}_{i}^{T} D^{0,1} \phi\left(\mathbf{x}, \mathbf{x}_{i}\right)+\mathbf{c}^{T} \mathbf{x}+d \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
L\left(\hat{x}, x_{\Gamma}\right)=\sum_{j \in[1, s]}\left(E_{j}\left(x_{j}\right)+\frac{1}{2}\left\|z_{j}-R_{\Gamma_{j}} x_{\Gamma}\right\|_{K_{j}}^{2}\right) . \tag{5}
\end{equation*}
\]
\[
\begin{aligned}
& \Sigma_{J}=\left[\check{q}_{J}\right]^{-1}=\left[\sum_{i} \alpha_{i} \breve{q}_{i}\right]^{-1}=\left(\sum_{i} \alpha_{i} \Sigma_{i}^{-1}\right)^{-1}, \\
& \mu_{J}=\Sigma_{J}\left(\sum_{i} \alpha_{i} \bar{q}_{i}\right)=\left(\sum_{i} \alpha_{i} \Sigma_{i}^{-1}\right)^{-1}\left(\sum_{i} \alpha_{i} \Sigma_{i}^{-1} \mu_{i}\right),
\end{aligned}
\]

Summation in IPLA

\section*{Summation in IOLA}
- Conservative rather than greedy
\[
\sum_{i} a_{i} b_{i}+c<\frac{\left.\sum_{i}^{\sum_{i}} a_{i} b_{i}\right)+c}{\left(a_{i} b_{i}+c\right)}
\]

\section*{Summation in IOLA}
- Conservative rather than greedy
\[
\sum_{i} a_{i} b_{i}+c>\frac{\left(\sum_{i} a_{i} b_{i}\right)+c}{\left(\sum_{i} a_{i} b_{i}+c\right)}
\]
\[
\begin{aligned}
& \Sigma_{-} i \quad w_{-} i \quad T_{-} i p \\
& \text { where } \\
& w_{-} i \in \mathbb{R} \\
& T_{-} i \in \mathbb{R}^{\wedge}(4 \times 4) \\
& p \in \mathbb{R}^{4}
\end{aligned}
\]

\section*{Summation in IOLA}
- Conservative rather than greedy
- Bounds inferred from index use
\[
\begin{aligned}
& \Sigma_{-} i \quad w_{-} i T_{-} i p \\
& \text { where } \\
& w_{-} i \in \mathbb{R} \\
& T_{-} i \in \mathbb{R}^{\wedge}(4 \times 4) \\
& p \in \mathbb{R}^{4}
\end{aligned}
\]

\section*{Summation in IOLA}
- Conservative rather than greedy
- Bounds inferred from index use
\[
\begin{aligned}
& \Sigma_{-} i \quad w_{-} i \quad T_{-} i p \\
& \text { where } \\
& w_{-} i \in \mathbb{R} \\
& T_{-} i \in \mathbb{R}^{\wedge}(4 \times 4) \\
& p \in \mathbb{R}^{4}
\end{aligned}
\]

\section*{Various norms (14\%)}

\section*{Various norms (14\%)}
\[
\begin{equation*}
\iiint_{\Omega}\left(\frac{\rho}{\Delta t}\left\|\mathbf{u}-\mathbf{u}^{*}\right\|_{2}^{2}+\mu\|\nabla \mathbf{u}\|_{F}^{2}\right) d V, \quad \text { (5) } \quad E(\widetilde{\mathrm{~L}})=\left\|\mathrm{PM} \mathrm{M}^{-1} \mathrm{LI}-\widetilde{\mathrm{M}}^{-1} \widetilde{\mathrm{LP}}\right\|_{\widetilde{\mathrm{M}}}, ~ \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
r_{k}=\|\mathbf{A x}-\mathbf{b}\|_{\mathcal{K}_{k}} \tag{69}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\left\{\mathbf{a}_{l}, \mathbf{b}_{l}, \mathbf{c}_{l}\right\}}\left\|R-\sum_{l=1}^{\bar{m}} \mathbf{a}_{l} \otimes \mathbf{b}_{l} \otimes \mathbf{c}_{l}\right\|_{\mathcal{F}}^{2} \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}\left\|\sum_{i} \alpha_{i} E^{X_{i}}-E^{V}\right\|_{F}^{2}+\tau\|\alpha\|_{1}, \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\gamma \sum_{i=1}^{r} A_{1}\left(p_{i}\right)\left\|X_{12}\left(p_{i},:\right)-X_{2}\left(q_{i}\right)\right\|_{M_{2}}^{2}+A_{2}\left(q_{i}\right)\left\|X_{21}\left(q_{i},:\right)-X_{1}\left(p_{i}\right)\right\|_{M_{1}}^{2} . \tag{13}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}\left\|E^{U} C-C \sum_{i} \alpha_{i} E^{V_{i}}\right\|^{2}+\tau\|\alpha\|_{1} . \tag{14}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{w}_{j}=\left(\mathbf{R}_{j}^{W}\right)^{\top}\left(\frac{\mathbf{P}-\mathbf{t}_{j}^{W}}{\left\|\mathbf{P}-\mathbf{t}_{j}^{W}\right\|_{2}}\right) . \tag{13}
\end{equation*}
\]

\section*{Various norms (14\%)}
\[
\begin{equation*}
\iiint_{\Omega}\left(\frac{\rho}{\Delta t}\left\|\mathbf{u - \mathbf { u } ^ { * } \| _ { 2 } ^ { 2 }}+\mu\right\| \nabla \mathbf{u} \|_{F}^{2}\right) d V, \quad \text { (5) } \quad E(\widetilde{\mathrm{~L}})=\left\|\mathrm{PM}^{-1} \mathrm{LI}-\widetilde{\mathrm{M}}^{-1} \widetilde{\mathrm{LP}}\right\|_{\widetilde{\mathrm{M}}^{2}}^{2} \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
r_{k}=\|\mathbf{A x}-\mathbf{b}\|_{\mathcal{K}_{k}} \tag{69}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\left\{\mathbf{a}_{l}, \mathbf{b}_{l}, \mathbf{c}_{l}\right\}}\left\|R-\sum_{l=1}^{\bar{m}} \mathbf{a}_{l} \otimes \mathbf{b}_{l} \otimes \mathbf{c}_{l}\right\|_{\mathcal{F}}^{2} \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}\left\|\sum_{i} \alpha_{i} E^{X_{i}}-E^{V}\right\|_{F}^{2}+\tau\|\alpha\|_{1}, \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\gamma \sum_{i=1}^{r} A_{1}\left(p_{i}\right)\left\|X_{12}\left(p_{i},:\right)-X_{2}\left(q_{i}\right)\right\|_{M_{2}}^{2}+A_{2}\left(q_{i}\right)\left\|X_{21}\left(q_{i},:\right)-X_{1}\left(p_{i}\right)\right\|_{M_{1}}^{2} . \tag{13}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}\left\|E^{U} C-C \sum_{i} \alpha_{i} E^{V_{i}}\right\|^{2}+\tau\|\alpha\|_{1} . \tag{14}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{w}_{j}=\left(\mathbf{R}_{j}^{W}\right)^{\top}\binom{\mathbf{P}-\mathbf{t}_{j}^{W}}{\left\|\mathbf{P}-\mathbf{t}_{j}^{W}\right\|_{2}} . \tag{13}
\end{equation*}
\]

\section*{Various norms (14\%)}
\[
\begin{equation*}
\iiint_{\Omega}(\frac{\rho}{\Delta t} \underbrace{\left\|\mathbf{u}-\mathbf{u}^{*}\right\|_{2}^{2}}+\mu\|\nabla \mathbf{u}\|_{F}^{2}) d V, \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
r_{k}=\|\mathbf{A x}-\mathbf{b}\|_{\mathcal{K}_{k}} \tag{69}
\end{equation*}
\]
\[
\begin{equation*}
E(\widetilde{\mathrm{~L}})=\left\|\mathrm{PM} \mathrm{M}^{-1} \mathrm{LI}-\widetilde{\mathrm{M}}^{-1} \widetilde{\mathrm{LP}}\right\|_{\widetilde{\mathcal{M}}}^{2}, \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\left\{\mathbf{a}_{l}, \mathbf{b}_{l}, \mathbf{c}_{l}\right\}}\left\|R-\sum_{l=1}^{\bar{m}} \mathbf{a}_{l} \otimes \mathbf{b}_{l} \otimes \mathbf{c}_{l}\right\|_{\mathcal{F}}^{2} \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}\left\|\sum_{i} \alpha_{i} E^{X_{i}}-E^{V}\right\|_{F}^{2}+\tau\|\alpha\|_{1} \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\gamma \sum_{i=1}^{r} A_{1}\left(p_{i}\right)\left\|X_{12}\left(p_{i},:\right)-X_{2}\left(q_{i}\right)\right\|_{M_{2}}^{2}+A_{2}\left(q_{i}\right)\left\|X_{21}\left(q_{i},:\right)-X_{1}\left(p_{i}\right)\right\|_{M_{1}}^{2} . \tag{13}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}\left\|E^{U} C-C \sum_{i} \alpha_{i} E^{V_{i}}\right\|^{2}+\tau\|\alpha\|_{1} . \tag{14}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{w}_{j}=\left(\mathbf{R}_{j}^{W}\right)^{\top}\binom{\mathbf{P}-\mathbf{t}_{j}^{W}}{\left\|\mathbf{P}-\mathbf{t}_{j}^{W}\right\|_{2}} . \tag{13}
\end{equation*}
\]

\section*{Various norms (14\%)}
\[
\begin{equation*}
\iiint_{\Omega}\left(\frac{\rho}{\Delta t} \sqrt{\left\|\mathbf{u}-\mathbf{u}^{*}\right\|_{2}^{2}}+\mu\|\nabla \mathbf{u}\|_{F}^{2}\right) d V \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
r_{k}=\|\mathbf{A x}-\mathbf{b}\|_{\mathcal{K}_{k}} \tag{69}
\end{equation*}
\]
\[
\begin{equation*}
E(\widetilde{\mathrm{~L}})=\left\|\mathrm{PM}^{-1} \mathrm{LI}-\widetilde{\mathrm{M}}^{-1} \widetilde{\mathrm{LP}}\right\|_{\widetilde{\mathrm{M}}^{2}}^{2} \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\left\{\mathbf{a}_{l}, \mathbf{b}_{l}, \mathbf{c}_{l}\right\}}\left\|R-\sum_{l=1}^{m} \mathbf{a}_{l} \otimes \mathbf{b}_{l} \otimes \mathbf{c}_{l}\right\|_{\mathcal{F}}^{2} \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}^{\left\|\sum_{i} \alpha_{i} E^{X_{i}}-E^{V}\right\|_{F}^{2}+\tau\|\alpha\|_{1}} \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\gamma \sum_{i=1}^{r} A_{1}\left(p_{i}\right)\left\|X_{12}\left(p_{i},:\right)-X_{2}\left(q_{i}\right)\right\|_{M_{2}}^{2}+A_{2}\left(q_{i}\right)\left\|X_{21}\left(q_{i},:\right)-X_{1}\left(p_{i}\right)\right\|_{M_{1}}^{2} . \tag{13}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha} \| E^{U} C-C \sum_{i} \alpha_{i} E^{V_{i}\left\|^{2}+\tau\right\| \alpha \|_{1}} . \tag{14}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{w}_{j}=\left(\mathbf{R}_{j}^{W}\right)^{\top}\binom{\mathbf{P}-\mathbf{t}_{j}^{W}}{\left\|\mathbf{P}-\mathbf{t}_{j}^{W}\right\|_{2}} . \tag{13}
\end{equation*}
\]

\section*{Various norms (14\%)}
\[
\begin{equation*}
\iiint_{\Omega}\left(\frac{\rho}{\Delta t}\left\|\mathbf{u - \mathbf { u } ^ { * } \| _ { 2 } ^ { 2 }}+\mu\right\| \nabla \mathbf{u} \|_{F}^{2}\right) d V, \quad \text { (5) } \quad E\left(\widetilde{\mathrm{~L})}=\left\|\mathrm{PM}^{-1} \mathrm{LI}-\widetilde{\mathrm{M}}^{-1} \widetilde{\mathrm{LP}}\right\|_{\widetilde{\mathrm{M}}}^{2},\right. \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
r_{k}=\|\mathrm{Ax}-\mathbf{b}\|_{\mathcal{K}_{k}} \tag{69}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\left\{\mathbf{a}_{l}, \mathbf{b}_{l}, \mathbf{c}_{l}\right\}}\left\|R-\sum_{l=1}^{m} \mathbf{a}_{l} \otimes \mathbf{b}_{l} \otimes \mathbf{c}_{l}\right\|_{\mathcal{F}}^{2} \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}\left\|\sum_{i} \alpha_{i} E^{X_{i}}-E^{V}\right\|_{F}^{2}+\tau\|\alpha\|_{1} \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\gamma \sum _ { i = 1 } ^ { r } A _ { 1 } ( p _ { i } ) \longdiv { \| X _ { 1 2 } ( p _ { i } , : ) - X _ { 2 } ( q _ { i } ) \| _ { M _ { 2 } } ^ { 2 } } + A _ { 2 } ( q _ { i } ) \| X _ { 2 1 } ( q _ { i } , : ) - X _ { 1 } ( p _ { i } ) \| _ { M _ { 1 } } ^ { 2 } . \tag{13}
\end{equation*}
\]
\[
\begin{equation*}
\min _{\alpha}\left\|E^{U} C-C \sum_{i} \alpha_{i} E^{V_{i}}\right\|^{2}+\tau\|\alpha\|_{1} . \tag{14}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{w}_{j}=\left(\mathbf{R}_{j}^{W}\right)^{\top}\binom{\mathbf{P}-\mathbf{t}_{j}^{W}}{\left\|\mathbf{P}-\mathbf{t}_{j}^{W}\right\|_{2}} . \tag{13}
\end{equation*}
\]

Norms in IOLA
\[
\begin{aligned}
& a=\|T\|_{1}+\|T\| \\
& b=\|T\|_{-}+\|T\|_{1} P \\
& c=\|P\|_{-}+\|P\|_{-} F \\
& \text { where } \\
& T: \mathbb{R}^{2}: \text { a vector } \\
& \mathrm{P}: \mathbb{R}^{\wedge}(2 \times 2): \text { a matrix }
\end{aligned}
\]

I LA compiler

IOLA compiler

IOLA
Source
```

y=f(x)}\mp@subsup{}{}{2
where
x}\in\mp@subsup{\mathbb{R}}{}{2
f}\in\mp@subsup{\mathbb{R}}{}{2}->\mathbb{R

```

IOLA compiler

IOLA
AST
Source


I LA compiler


I LA compiler


I LA compiler


I LA compiler
Code
Generation


I LA compiler
Code
Generation


\section*{IOLA compiler}

Code
Generation


\section*{IOLA compiler}

Code
Generation


\section*{Examples from the Wild}


\section*{Examples from the Wild}
\[
\begin{aligned}
& L_{i j}= \begin{cases}w_{i j} & \text { if } i \neq j \text { and } \exists\{i j\} \in \mathbf{E} \\
-\sum_{\ell \neq i} L_{i \ell} & \text { if } i=j, \text { or } \\
0 & \text { otherwise }\end{cases} \\
& \text { L_i,j=\{ w_i,jif(i,j)GE} \begin{array}{l}
0 \text { otherwise } \\
\text { L_i,i }=-\sum_{-}(\ell \text { for } \ell \neq i) \text { L_i, } \ell \\
\text { where } \\
L \in \mathbb{R}^{\wedge}(n \times n) \\
\text { w } \in \mathbb{R}^{\wedge}(n \times n): \text { edge weight matrix } \\
E \in\left\{\mathbb{Z}^{2}\right\} \text { index: edges }
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\mathbf{x}(\theta, \phi)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right. \\
\text { rigonometry: }
\end{array} \\
& \begin{array}{l}
\text { from trigonometry: } \\
\times x(\theta, \phi)=[R \cos (
\end{array} \\
& \text { Rsin( }
\end{aligned}
\]
where
\(\phi \in \mathbb{R}\) : angle betw
\(\theta \in \mathbb{R}\) : angle beth
\(\mathbb{R} \in \mathbb{R}\) : the radius
(a) Geometry Processing Course: Parameterization
[Jacobson 2020]
(b) Polyg

\section*{Examples from the Wild}
\[
\begin{aligned}
& L_{i j}= \begin{cases}w_{i j} & \text { if } i \neq j \text { and } \exists\{i j\} \in \mathbf{E} \\
-\sum_{\ell \neq i} L_{i \ell} & \text { if } i=j, \text { or } \\
0 & \text { otherwise }\end{cases} \\
& \text { L_i,j }=\{\text { w_i,jif }(i, j) \in \mathrm{E} \\
& 0 \text { otherwise } \\
& \text { L_i,i }=-\sum_{-}(\ell \text { for } \ell \neq \text { i) L_i, } \ell \\
& \text { where } \\
& \text { L } \in \mathbb{R}^{\wedge}(n \times n) \\
& \text { w } \in \mathbb{R}^{\wedge}(n \times n): \text { edge weight matrix } \\
& E \in\left\{\mathbb{Z}^{2}\right\} \text { index: edges }
\end{aligned}
\]
\(L_{-}{ }_{1}, j=\left\{w_{-} i, j\right.\) if \((i, j) \in E\)
otherwise
\(L_{-} i, i=-\sum_{-}(\ell\) for \(\ell \neq i) L_{-} i, \ell\)
where
\(L \in \mathbb{R}^{\wedge}(n \times n)\)
\(\mathrm{w} \in \mathbb{R}^{\wedge}(\mathrm{n} \times \mathrm{n})\) : edge weight matrix
\(\mathrm{E} \in\left\{\mathbb{Z}^{2}\right\}\) index: edges

\section*{Geometry Processing: Parameterization}

An example from Geometry Processing: Parameterization
The original equation:


IOLA implementation:
\(L_{-} i, j=\left\{w_{-} i, j\right.\) if \((i, j) \in E\) 0 otherwise
\(L_{-} i, i=-\sum_{-}(l\) for \(l \neq i) L_{-} i, l\)
where
\(L \in \mathbb{R}^{\wedge}(n \times n)\)
\(w \in \mathbb{R}^{\wedge}(n \times n)\) : edge weight matrix
\(E \in\left\{\mathbb{Z}^{2}\right\}\) index: edges

\section*{Geometry Processing: Parameterization}

An example from Geometry Processing: Parameterization
The original equation:


IOLA implementation:
\(L_{-} i, j=\left\{w_{-} i, j\right.\) if \((i, j) \in E\) 0 otherwise
\(L_{-} i, i=-\sum_{-}(l\) for \(l \neq i) L_{-} i, l\)
where
\(L \in \mathbb{R}^{\wedge}(n \times n)\)
\(w \in \mathbb{R}^{\wedge}(n \times n)\) : edge weight matrix
\(E \in\left\{\mathbb{Z}^{2}\right\}\) index: edges

ICLA compiled to \(\mathrm{C}++\) /Eigen:
course_parameterizationResultType course_parameterization(
const Eigen: : MatrixXd \& w
const std::set<std::tuple< int, int \gg \& E)
const long \(\mathrm{n}=\mathrm{w} . \operatorname{cols()}\);
assert( \(\mathbf{w} \cdot \operatorname{rows}()==n\)
Eigen::SparseMatrix<double> L(n, n)
std: :vector<Eigen: :Triplet<double\gg tripletList_L;
for ( int \(i=1 ; i<=n ; i++)\}\)
for ( int \(\mathbf{j}=\mathbf{1} ; \mathbf{j}<=\mathbf{n} ; \mathbf{j}++\) ) \(\{\)
if(E.find(std::tuple< int, int \(>(\mathbf{i}-1, j-1))\) != E.end()) \{ tripletList_L.push_back(Eigen::Triplet<double>(i-1, j-1
    3
\} \}
L.setFromTriplets(tripletList_L.begin(), tripletList_L.end())
for ( int \(\mathbf{i = 1 ; ~} \mathbf{i}<=\mathbf{n} ; \mathbf{i}++\) )

\section*{Geometry Processing: Parameterization}

An example from Geometry Processing: Parameterization
The original equation:


I LA compiled to C++/Eigen:
course_parameterizationResultType course_parameterization
const Eigen: : MatrixXd \& w
const std::set<std::tuple< int, int \gg \& E)
const long \(\mathrm{n}=\mathrm{w} \cdot \operatorname{cols(})\)
assert ( \(\mathbf{w}\).rows ) == n

Eigen::SparseMatrix<double> L(n, n) std: :vector<Eigen: :Triplet<double\gg tripletList_L. for ( int \(i=1 ; i<=n ; i++\) ) \(\}\)
for (int \(j=1 ; j<=n ; j++\) )
if(E.find(std:: tuple< int, int >(i-1, j-1)) != E.end()) \{ tripletList_L.push_back(Eigen::Triplet<double>(i-1, j-
\}
L.setFromTriplets(tripletList_L.begin(), tripletList_L.end())
for ( int \(\mathbf{i}=1 ; \mathbf{i}<=\mathbf{n} ; \mathbf{i}++\) ) \(\{\)
double sum_0 = 0;



IOLA implementation:

\title{
\(L_{-} i, j=\left\{w_{i} i, j\right.\) if \((i, j) \in E\)
} 0 otherwise
\(L_{-} i, i=-\sum_{-}(l\) for \(\ell \neq i) L_{-i}, \ell\)
where
\(L \in \mathbb{R}^{\wedge}(n \times n)\)
\(w \in \mathbb{R}^{\wedge}(n \times n)\) : edge weight matrix
\(E \in\left\{\mathbb{Z}^{2}\right\}\) index: edges

LA compiled to Python/NumPy/SciPy:
def course_parameterization(w, E):
:param :w : edge weight matrix :param :E : edges
\(\mathrm{w}=\mathrm{np}\).asarray \((\mathrm{w}\), dtype=np.float64
E = frozenset (E)
\(\mathrm{n}=\mathrm{w}\). shape [1]
assert w.shape \(=(n, n)\)
Lij_0 = []
Lvals_0 =
for i in range (1, \(\mathrm{n}+1\) ):
for \(j\) in range (1, \(n+1\) )
if (i-1, \(j-1\) ) in \(E\)
Lij_0.append ( \((\mathbf{i}-1, j-1)\) )
Lvals 0 append \((\mathbf{w}[\mathrm{i}-1, \mathrm{j}-17)\)
sparse_0 = scipy. sparse.coo_matrix(CLvals_0, np. asarray(Lij_0).T) L = sparse_0 for \(i\) in range (1, \(n+1\) )

\section*{Geometry Processing: Parameterization}

An example from Geometry Processsing: Parameterization
The original equation:


course_parameterizationResultType course_parameterization( const Eigen: :MatrixXd \& w const std::set<std::tuple< int, int \gg \& E)
const long \(\mathrm{n}=\mathrm{w} . \operatorname{cols()}\)
assert( \(\mathbf{w} \cdot \operatorname{rows}()==n\) )
Eigen::SparseMatrix<double> L(n, n)
std: :vector<Eigen: :Triplet<double\gg tripletList_L;
for ( int \(i=1 ; i<=n ; i++\) ) \(\{\)
for (int \(\mathbf{j}=\mathbf{1} ; \mathbf{j}<=\mathbf{n} ; \mathbf{j}++\) ) \(\{\)
if(E.find(std::tuple< int, int >(i-1, j-1)) ! = E.endO) \{ tripletList_L.push_back(Eigen::Triplet<double>(i-1, j-
\(\qquad\)
\}
L.setFromTriplets(tripletList_L.begin(), tripletList_L.end())
for ( int \(\mathbf{i = 1}\); \(\mathbf{i}<=\mathbf{n} ; \mathbf{i}++\) )
double sum_ \(0=0\)

IOLA implementation:

\title{
\(L_{-} i, j=\left\{w_{-} i, j\right.\) if (i,j) \(\in E\)
} 0 otherwise
\(L_{-} i, i=-\sum_{-}(l\) for \(l \neq i) L_{-} i, l\)
where
\(L \in \mathbb{R}^{\wedge}(n \times n)\)
\(w \in \mathbb{R}^{\wedge}(n \times n)\) : edge weight matrix
\(E \in\left\{\mathbb{Z}^{2}\right\}\) index: edges

\section*{IMLA compiled to Python/NumPy/Scipy:}
def course_parameterization(w, E):
:param :w : edge weight matrix :param : E : edges
\(\mathrm{w}=\mathrm{np} . \operatorname{asarray}(\mathrm{w}\), dtype=np.float64)
\(\mathrm{w}=\mathrm{np} \cdot \operatorname{asarray}(\mathrm{w}\),
\(\mathrm{E}=\) frozenset \((\mathrm{E})\)
\(\mathrm{n}=\mathrm{w}\). shape \([1]\)
assert \(w\).shape \(=(n, n)\)
Lij_0 = []
Lvals_0 = \(\square\)
for \(i\) in range ( \(1, n+1\) ):
for \(j\) in range ( \(1, n+1\) )
if (i-1, \(j-1\) ) in \(E\)
Lij_0 append ( \(\mathbf{i}-1, j-1\) )
Lvals 0 append \(\mathbf{w}[\mathrm{i}-1, \mathrm{j}-17\) )
sparse_0 = scipy. sparse coo_matrix(CLvals_0, np. asarray(Lij_0).T), L = sparse_0 for \(i\) in range ( \(1, n+1\) ):

\section*{I LA compiled to MATLAB:}

\section*{Lvals_0 = zeros(1, 0)}
\[
\mathrm{r} \mathrm{i}=1: \mathrm{n}
\]
\[
\text { for } j=1 \text { :n }
\]
if ismember ([i, j], E, 'rows')
\[
\text { Lij_0(1:2, end }+1)=[i ; j]
\]
\[
\text { Lvals_0 }(e n d+1)=w(i, j) ;
\]

\section*{end}

\section*{end}
end
sparse_0 = sparse(Lij_0(1,:),Lij_0(2,:),Lvals_0,n,n);
L = sparse_0
sum_ \(0=0\)
for ell = 1: \(\operatorname{size}(\mathrm{L}, 2)\)
if ell ~= i
sum_0 = sum_0 + L(i, ell)
end

\section*{end}

Lij_0(1:2,end+1) = [i;i]

Geometry Processing: Parameterization

An example from Geometry Processing: Parameterization
The original equation:


IVLA compiled to \(\mathrm{C}+\mathrm{H}\) IGen:
course_parameterizationResultType course_parameterization(
const Eigen: :MatrixXd \& w
const std::set<std::tuple< int, int \gg \& E)
const Long \(\mathrm{n}=\mathrm{w}\).cols()
assert( \(\mathbf{w}\).rows ) == n )

Eigen::SparseMatrix<double> L(n, n)
std: :vector<Eigen: :Triplet<double\gg tripletList_L
for ( int \(i=1 ; \mathfrak{i}<=n ; i++\) ) \(\}\)
for ( int \(\mathbf{j}=1 ; \mathbf{j}<=\mathbf{n} ; \mathbf{j}++\) )
if(E.find(std::tuple< int, int >(i-1, j-1)) ! = E.endO) \{ tripletList_L.push_back(Eigen::Triplet<double>(i-1, j-
\}
\}
L.setFromTriplets(tripletList_L.begin(), tripletList_L.end())
for ( int \(\mathbf{i}=1 ; \mathbf{i}<=\mathbf{n} ; \mathbf{i}++\) )
double sum_0 = 0

IOLA implementation:
\(L_{-} i, j=\left\{w_{-} i, j\right.\) if \((i, j) \in E\) 0 otherwise
\(L_{-} i, i=-\sum_{-}(l\) for \(l \neq i) L_{-} i, l\)

\section*{where}
\(L \in \mathbb{R}^{\wedge}(n \times n)\)
\(w \in \mathbb{R}^{\wedge}(n \times n)\) : edge weight matrix
\(E \in\left\{\mathbb{Z}^{2}\right\}\) index: edges

LA LaTeX output:
\[
\begin{aligned}
& L_{i, j}= \begin{cases}w_{i, j} & \text { if }(i, j) \in E\end{cases} \\
& \text { otherwise } \\
& L_{i, i}=-\sum_{\ell \neq i} L_{i, t} \\
& \text { where } \\
& L \in \mathbb{R}^{n \times n} \\
& w \in \mathbb{R}^{n \times n} \text { edge weight matrix } \\
& E \in\left\{\mathbb{Z}^{2}\right\} \text { index edges }
\end{aligned}
\]


I LA compiled to Python/NumPy/SciPy:
def course_parameterization(w, E) :
:param :w : edge weight matrix :param : E : edges
\(w=n p . \operatorname{asarray}(w\), dtype=np.float64
\(\mathrm{w}=\mathrm{np}\). asarray \((\mathrm{w}\)
\(\mathrm{E}=\) frozenset \((\mathrm{E})\)
\(\mathrm{n}=\mathrm{w}\). shape \([1]\)
assert \(w\).shape \(=(n, n)\)
Lij_0 = []
Lvals_0 = [
for i in range ( \(1, \mathrm{n}+1\) ):
for j in range ( \(1, \mathrm{n}+1\) )
if (i-1, \(j-1\) ) in
Lij_0 append ( \((\mathbf{i}-1, j-1)\) )
Lvals 0 append (w[i-1 \(j-1]\) )
sparse_0 = scipy sparse coo_matrix (LVals_0, np asarray(Lij_0).T), = sparse_ 0 for i in range (1, \(\mathrm{n}+1\) )

\section*{I LA compiled to MATLAB}

\section*{Lvals 0 = zeros(1, 0)}
\[
i=1: n
\]
\[
\begin{aligned}
& \text { for } j=1: n \\
& \text { if ismember ([i, j],E,'rows') } \\
& \text { Lij_0 }(1: 2, \text { end }+1)=[i ; j] \text {; } \\
& \text { Lvals_0(end+1) = w(i, j); }
\end{aligned}
\]

\section*{end}
end
sparse_0 \(=\) sparse(Lij \(0(1,:)\) Lij \(0(2,:\) Lvals \(0, n, n)\);
L = sparse_0
sum_ \(0=0\)
for ell = 1: \(\operatorname{size}(L, 2)\)
if ell ~= i
sum_0 = sum_0 + L(i, ell)
end
end
Lij_0(1:2,end+1) = [i;i];

Geometry Processing: Parameterization

An example from Geometry Processing: Parameterization
The original equation:



I LA compiled to Python/NumPy/SciPy:
def course_parameterization(w, E):
:param :w : edge weight matrix :param : E : edges
\(\mathrm{w}=\mathrm{np}\).asarray (w, dtype=np.float64
\(\mathrm{w}=\mathrm{np}\). asarray (w
\(\mathrm{E}=\) frozenset \((\mathrm{E})\)
\(\mathrm{n}=\mathrm{w}\).shape [1]
assert w.shape \(==(n, n)\)
Lij_0 = []
Lvals_0 =
for i in range ( \(1, \mathrm{n}+1\) ):
for \(j\) in range ( \(1, \mathrm{n}+1\) )
if \((i-1, j-1)\) in \(E\)

\section*{IOLA compiled to MATLAB:}

\section*{Lvals \(0=\) zeros \((1,0)\)}
\[
i=1: n
\]
\[
\text { for } \begin{aligned}
& j= 1: n \\
& \text { if } \operatorname{ismember}([i, j], E, ' r o w s ') \\
& \quad \operatorname{Lij\_ } \quad 0(1: 2, \text { end }+1)=[i ; j] ; \\
& \quad \operatorname{lvals\_ } ;(\text { end }+1)=w(i, j) ;
\end{aligned}
\]

\section*{end}

\section*{end}
sparse_0 = sparse(Lij_0(1,:),Lij_0(2,:),Lvals_0,n,n)
L = sparse_0
sum_ \(0=0\)
for ell = 1: \(\operatorname{size}(\mathrm{L}, 2)\)
if ell ~= i
sum_0 = sum_0 + L(i, ell)
end
end
Lij_0(1:2,end+1) = [i;i]

\section*{Examples from the Wild}
\[
\begin{aligned}
& L_{i j}= \begin{cases}w_{i j} & \text { if } i \neq j \text { and } \exists\{i j\} \in \mathbf{E} \\
-\sum_{\ell \neq i} L_{i \ell} & \text { if } i=j, \text { or } \\
0 & \text { otherwise }\end{cases} \\
& \text { L_i,j }=\{\text { w_i,jif }(i, j) \in \mathrm{E} \\
& 0 \text { otherwise } \\
& \text { L_i,i }=-\sum_{-}(\ell \text { for } \ell \neq \text { i) L_i, } \ell \\
& \text { where } \\
& \text { L } \in \mathbb{R}^{\wedge}(n \times n) \\
& \text { w } \in \mathbb{R}^{\wedge}(n \times n): \text { edge weight matrix } \\
& E \in\left\{\mathbb{Z}^{2}\right\} \text { index: edges }
\end{aligned}
\]

\section*{Examples from the Wild}
\[
\begin{aligned}
& L_{i j}= \begin{cases}w_{i j} & \text { if } i \neq j \text { and } \exists\{i j\} \in \mathbf{E} \\
-\sum_{\ell \neq i} L_{i \ell} & \text { if } i=j, \text { or } \\
0 & \text { otherwise }\end{cases} \\
& \text { L_i,j=\{ w_i,jif(i,j)GE} \begin{array}{l}
0 \text { otherwise } \\
\text { L_i,i }=-\sum_{-}(\ell \text { for } \ell \neq i) \text { L_i, } \ell \\
\text { where } \\
L \in \mathbb{R}^{\wedge}(n \times n) \\
\text { w } \in \mathbb{R}^{\wedge}(n \times n): \text { edge weight matrix } \\
E \in\left\{\mathbb{Z}^{2}\right\} \text { index: edges }
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\mathbf{x}(\theta, \phi)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right. \\
\text { rigonometry: }
\end{array} \\
& \begin{array}{l}
\text { from trigonometry: } \\
\times x(\theta, \phi)=[R \cos (
\end{array} \\
& \text { Rsin( }
\end{aligned}
\]
where
\(\phi \in \mathbb{R}\) : angle betw
\(\theta \in \mathbb{R}\) : angle beth
\(\mathbb{R} \in \mathbb{R}\) : the radius
(a) Geometry Processing Course: Parameterization
[Jacobson 2020]
(b) Polyg

\section*{Examples from the Wild}


\section*{Integrating with Existing Code}

\section*{Integrating with Existing Code}
- Polygon Mesh Processing Library
- Conforming Weighted Delaunay Triangulations
- Properties of Laplace Operators for Tetrahedral Meshes_volume
- Properties of Laplace Operators for Tetrahedral Meshes_circumcenter
- Instant Field-Aligned Meshes
- Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization
- Frame Fields: Anisotropic and Non-Orthogonal Cross Fields
- Regularized Kelvinlets: Sculpting Brushes based on Fundamental Solutions of Elasticity
- Robust Inside-Outside Segmentation using Generalized Winding Numbers
- Gaussian-Product Subdivision Surfaces

\section*{Integrating with Existing Code}
- Polygon Mesh Processing Library
- Conforming Weighted Delaunay Triangulations
- Properties of Laplace Operators for Tetrahedral Meshes_volume
- Properties of Laplace Operators for Tetrahedral Meshes_circumcenter
- Instant Field-Aligned Meshes
- Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization
- Frame Fields: Anisotropic and Non-Orthogonal Cross Fields
- Regularized Kelvinlets: Sculpting Brushes based on Fundamental Solutions of Elasticity
- Robust Inside-Outside Segmentation using Generalized Winding Numbers
- Gaussian-Product Subdivision Surfaces


\section*{Integrating with Existing Code}
- Polygon Mesh Processing Library
- Conforming Weighted Delaunay Triangulations
- Properties of Laplace Operators for Tetrahedral Meshes_volume
- Properties of Laplace Operators for Tetrahedral Meshes_circumcenter
- Instant Field-Aligned Meshes
- Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization
- Frame Fields: Anisotropic and Non-Orthogonal Cross Fields
- Regularized Kelvinlets: Sculpting Brushes based on Fundamental Solutions of Elasticity
- Robust Inside-Outside Segmentation using Generalized Winding Numbers
- Gaussian-Product Subdivision Surfaces


\section*{Instant Field-Aligned Meshes}

Integrating with existing code from Instant Field-Aligned Meshes.
Project URL: Instant Field-Aligned Meshes
The original formula:
Intermediate position. We define a position \(\mathbf{q}_{i j}\) that minimizes the distance to vertices \(\mathbf{v}_{i}\) and \(\mathbf{v}_{j}\) while being located in their respective tangent planes, i.e.:
```

minimize $\left\|\mathbf{v}_{i}-\mathbf{q}_{i j}\right\|_{2}^{2}+\left\|\mathbf{v}_{j}-\mathbf{q}_{i j}\right\|_{2}^{2}$
subject to $\left\langle\mathbf{n}_{i}, \mathbf{q}_{i j}\right\rangle=\left\langle\mathbf{n}_{i}, \mathbf{v}_{i}\right\rangle$ and $\left\langle\mathbf{n}_{j}, \mathbf{q}_{i j}\right\rangle=\left\langle\mathbf{n}_{j}, \mathbf{v}_{j}\right\rangle$.

```

This constrained least-squares problem has a simple solution:
\[
\mathbf{q}_{i j}=\frac{1}{2}\left(\mathbf{v}_{i}+\mathbf{v}_{j}\right)-\frac{1}{4}\left(\lambda_{i} \mathbf{n}_{i}+\lambda_{j} \mathbf{n}_{j}\right)
\]
where the
agrange multiplier \(\lambda_{i}\) is
\(\lambda_{i}=\frac{2\left\langle\left(\mathbf{n}_{i}+\left\langle\mathbf{n}_{i}, \mathbf{n}_{j}\right\rangle \mathbf{n}_{j}, \mathbf{v}_{j}-\mathbf{v}_{i}\right\rangle\right.}{1-\left\langle\mathbf{n}_{i}, \mathbf{n}_{j}\right\rangle^{2}+\varepsilon}\),
and \(\lambda_{j}\) is defined analogously with \(i\) and \(j\) swapped. The parameter \(\varepsilon\) (set to \(10^{-4}\) in our implementation) ensures that \(\mathbf{q}_{i j}\) approximates the arithmetic mean of \(\mathbf{v}_{i}\) and \(\mathbf{v}_{j}\) when \(\mathbf{n}_{i} \approx \mathbf{n}_{j}\).

\section*{Instant Field-Aligned Meshes}

Integrating with existing code from Instant Field-Aligned Meshes.
Project URL: Instant Field-Aligned Meshes
The original formula:

Intermediate position. We define a position \(\mathbf{q}_{i j}\) that minimizes the distance to vertices \(\mathbf{v}_{i}\) and \(\mathbf{v}_{j}\) while being located in their re-
spective tangent planes, i.e.
```

$\operatorname{minimize}\left\|\mathbf{v}_{i}-\mathbf{q}_{i j}\right\|_{2}^{2}+\left\|\mathbf{v}_{j}-\mathbf{q}_{i j}\right\|_{2}^{2}$
subject to $\left\langle\mathbf{n}_{i}, \mathbf{q}_{i j}\right\rangle=\left\langle\mathbf{n}_{i}, \mathbf{v}_{i}\right\rangle$ and $\left\langle\mathbf{n}_{j}, \mathbf{q}_{i j}\right\rangle=\left\langle\mathbf{n}_{j}, \mathbf{v}_{j}\right\rangle$.

```

This constrained least-squares problem has a simple solution:
\(\mathbf{q}_{i j}=\frac{1}{2}\left(\mathbf{v}_{i}+\mathbf{v}_{j}\right)-\frac{1}{4}\left(\lambda_{i} \mathbf{n}_{i}+\lambda_{j} \mathbf{n}_{j}\right)\),
where the
agrange multiplier \(\lambda_{i}\) is
\(\lambda_{i}=\frac{2\left\langle\left(\mathbf{n}_{i}+\left\langle\mathbf{n}_{i}, \mathbf{n}_{j}\right\rangle \mathbf{n}_{j}, \mathbf{v}_{j}-\mathbf{v}_{i}\right\rangle\right.}{1-\left\langle\mathbf{n}_{i}, \mathbf{n}_{j}\right\rangle^{2}+\varepsilon}\),


\section*{Instant Field-Aligned Meshes}

Integrating with existing code from Instant Field-Aligned Meshes
Project URL: Instant Field-Aligned Meshes
The original formula:

Intermediate position. We define a position \(\mathbf{q}_{i j}\) that minimizes the distance to vertices \(\mathbf{v}_{i}\) and \(\mathbf{v}_{j}\) while being located in their respective tangent planes, i.e.:
\(\operatorname{minimize}\left\|\mathbf{v}_{i}-\mathbf{q}_{i j}\right\|_{2}^{2}+\left\|\mathbf{v}_{j}-\mathbf{q}_{i j}\right\|_{2}^{2}\)
subject to \(\left\langle\mathbf{n}_{i}, \mathbf{q}_{i j}\right\rangle=\left\langle\mathbf{n}_{i}, \mathbf{v}_{i}\right\rangle\) and \(\left\langle\mathbf{n}_{j}, \mathbf{q}_{i j}\right\rangle=\left\langle\mathbf{n}_{j}, \mathbf{v}_{j}\right\rangle\).

This constrained least-squares problem has a simple solution:
\(\mathbf{q}_{i j}=\frac{1}{2}\left(\mathbf{v}_{i}+\mathbf{v}_{j}\right)-\frac{1}{4}\left(\lambda_{i} \mathbf{n}_{i}+\lambda_{j} \mathbf{n}_{j}\right)\),
where the
agrange multiplier \(\lambda_{i}\) is
I LA source code:
\[
\begin{aligned}
& \epsilon=10 \wedge(-4)
\end{aligned}
\]
\[
\begin{aligned}
& { }^{`} \lambda_{j}{ }^{\prime}=\left(2\left\langle ` n_{j} `+\left(` n_{j}{ }^{\prime},{ }^{\prime} n_{i}{ }^{\prime}\right)^{\prime} n_{i}{ }^{\prime},{ }^{`} v_{i}{ }^{`}-{ }^{\prime} v_{j} `\right)\right) /\left(1-\left(` n_{j} `,{ }^{\prime} n_{i}{ }^{\prime}\right)^{2}+\epsilon\right) \\
& { }^{`} q_{i j}{ }^{`}=1 / 2\left({ }^{`} v_{i}{ }^{`}+{ }^{`} v_{j}{ }^{`}\right)-1 / 4\left(` \lambda_{i}{ }^{\prime}{ }^{`} n_{i}{ }^{`}+{ }^{`} \lambda_{j}{ }^{\prime}{ }^{\prime} n_{j}{ }^{`}\right)
\end{aligned}
\]
where
\(` v_{i} ` \in \mathbb{R} \wedge 3\)
\(` n_{i} ` \in \mathbb{R} \wedge 3\)
\({ }^{\prime} v_{j} \in \mathbb{R} \wedge 3\)
\(` n_{j} ` \in \mathbb{R} \wedge 3\)

\section*{The original source code:}


\section*{Instant Field-Aligned Meshes}

Integrating with existing code from Instant Field-Aligned Meshes
Project URL: Instant Field-Aligned Meshes
\(\epsilon=10 \wedge(-4)\)

The original formula:

Intermediate position. We define a position \(\mathbf{q}_{i j}\) that minimizes the distance to vertices \(\mathbf{v}_{i}\) and \(\mathbf{v}_{j}\) while being located in their respective tangent planes, i.e.:
\(\operatorname{minimize}\left\|\mathbf{v}_{i}-\mathbf{q}_{i j}\right\|_{2}^{2}+\left\|\mathbf{v}_{j}-\mathbf{q}_{i j}\right\|_{2}^{2}\)
subject to \(\left\langle\mathbf{n}_{i}, \mathbf{q}_{i j}\right\rangle=\left\langle\mathbf{n}_{i}, \mathbf{v}_{i}\right\rangle\) and \(\left\langle\mathbf{n}_{j}, \mathbf{q}_{i j}\right\rangle=\left\langle\mathbf{n}_{j}, \mathbf{v}_{j}\right\rangle\).

This constrained least-squares problem has a simple solution:
where the
\(\mathbf{q}_{i j}=\frac{1}{2}\left(\mathbf{v}_{i}+\mathbf{v}_{j}\right)-\frac{1}{4}\left(\lambda_{i} \mathbf{n}_{i}+\lambda_{j} \mathbf{n}_{j}\right)\),
agrange multiplier \(\lambda_{i}\) is
\[
\lambda_{i}=\frac{2\left\langle\left(\mathbf{n}_{i}+\left\langle\mathbf{n}_{i}, \mathbf{n}_{j}\right\rangle \mathbf{n}_{j}, \mathbf{v}_{j}-\mathbf{v}_{i}\right\rangle\right.}{1-\left\langle\mathbf{n}_{i}, \mathbf{n}_{j}\right\rangle^{2}+\varepsilon}
\]

\section*{The original source code:}


The modified source code:
\(\square\)

Q search

\section*{Instant \({ }_{2}\) Field-Aligned Meshes}

Wenzel Jakob \({ }^{1}\) Marco Tarini \({ }^{2,3}\) Daniele Panozzo \({ }^{1}\) Olga Sorkine-Hornung \({ }^{1}\)

0




Figure 1: Remeshing a scanned dragon with 13 million vertices into feature-aligned isotropic triangle and quad meshes with \(\sim 80 k\) vertices. From left to right, for both cases: visualizations of the orientation field, position field, and the output mesh (computed in 71.1 and 67.2 seconds, respectively). For the quad case, we optimize for a quad-dominant mesh at quarter resolution and subdivide once to obtain a pure quad mesh.

\section*{Abstract}

We present a novel approach to remesh a surface into an isotropic triangular or quad-dominant mesh using a unified local smoothing operator that optimizes both the edge orientations and vertex positions in the output mesh. Our algorithm produces meshes with high isotropy while naturally aligning and snapping edges to sharp features. The method is simple to implement and parallelize, and it can process a variety of input surface representations, such as point clouds, range scans and triangle meshes. Our full pipeline executes instantly (less than a second) on meshes with hundreds of thousands of faces, enabling new types of interactive workflows. Since our algorithm avoids any global optimization, and its key steps scale linearly with input size, we are able to process extremely large meshes and noint clouds with sizes exceedino several hundred

\section*{1 Introduction}

Triangle and quad-dominant meshes are ubiquitously used in comTriangle and quad-dominant meshes are ubiquitously used in com-
puter graphics and CAD applications to represent surfaces, either puter graphics and CAD applications to represent surfaces, either
directly, or as the control grid for higher-order parametric or subdirectly, or as the control grid for higher-order parametric or sub
division surfaces. With the introduction of T-splines [Sederberg division surfaces. With the introduction of T-splines [Sederberg
et al. 2003] and Dyadic T-Mesh Subdivision [Kovacs et al. 2015], et al. 2003] and Dyadic T-Mesh Subdivision [Kovacs et al. 2015],
quad-dominant meshes with T-joints (T-meshes) now have similar quad-dominant meshes with T-joints (T-meshes) now have similar properties and applications of pure quadrilateral meshes, while being
more flexible and naturally supporting the flexible local refinement more flexible and naturally supporting the flexible local refinement
that is often desired in CAD applications. Meshing surfaces is a that is often desired in CAD applications. Meshing surfaces is a
challenging problem, and a plethora of methods have been proposed challenging problem, and a plethora of methods have been proposed
in the past three decades to cope with the increasing quality and scalin the past three decades to cope with the increasing quality and scal-
ability requirements of modern applications [Owen 1998; Bommes ability requirements of modern applications [Owen 1998; Bommes
et al. 2013a]. Semi-regular meshes, which have uniform element
Q search

\section*{Instant \({ }_{2}\) Field-Aligned Meshes}

Wenzel Jakob \({ }^{1}\) Marco Tarini \({ }^{2,3}\) Daniele Panozzo \({ }^{1}\) Olga Sorkine-Hornung \({ }^{1}\)

0




Figure 1: Remeshing a scanned dragon with 13 million vertices into feature-aligned isotropic triangle and quad meshes with \(\sim 80 k\) vertices. From left to right, for both cases: visualizations of the orientation field, position field, and the output mesh (computed in 71.1 and 67.2 seconds, respectively). For the quad case, we optimize for a quad-dominant mesh at quarter resolution and subdivide once to obtain a pure quad mesh.

\section*{Abstract}

We present a novel approach to remesh a surface into an isotropic triangular or quad-dominant mesh using a unified local smoothing operator that optimizes both the edge orientations and vertex positions in the output mesh. Our algorithm produces meshes with high isotropy while naturally aligning and snapping edges to sharp features. The method is simple to implement and parallelize, and it can process a variety of input surface representations, such as point clouds, range scans and triangle meshes. Our full pipeline executes instantly (less than a second) on meshes with hundreds of thousands of faces, enabling new types of interactive workflows. Since our algorithm avoids any global optimization, and its key steps scale linearly with input size, we are able to process extremely large meshes and noint clouds with sizes exceedino several hundred

\section*{1 Introduction}

Triangle and quad-dominant meshes are ubiquitously used in comTriangle and quad-dominant meshes are ubiquitously used in com-
puter graphics and CAD applications to represent surfaces, either puter graphics and CAD applications to represent surfaces, either
directly, or as the control grid for higher-order parametric or subdirectly, or as the control grid for higher-order parametric or sub
division surfaces. With the introduction of T-splines [Sederberg division surfaces. With the introduction of T-splines [Sederberg
et al. 2003] and Dyadic T-Mesh Subdivision [Kovacs et al. 2015], et al. 2003] and Dyadic T-Mesh Subdivision [Kovacs et al. 2015],
quad-dominant meshes with T-joints (T-meshes) now have similar quad-dominant meshes with T-joints (T-meshes) now have similar properties and applications of pure quadrilateral meshes, while being
more flexible and naturally supporting the flexible local refinement more flexible and naturally supporting the flexible local refinement
that is often desired in CAD applications. Meshing surfaces is a that is often desired in CAD applications. Meshing surfaces is a
challenging problem, and a plethora of methods have been proposed challenging problem, and a plethora of methods have been proposed
in the past three decades to cope with the increasing quality and scalin the past three decades to cope with the increasing quality and scal-
ability requirements of modern applications [Owen 1998; Bommes ability requirements of modern applications [Owen 1998; Bommes
et al. 2013a]. Semi-regular meshes, which have uniform element

\section*{Integrating with Existing Code}
\begin{tabular}{lccc}
\hline Source & Language & LoC (original) & LoC (IVLA) \\
\hline Jacobson et al. [2013] & \(\mathrm{C}++\) & 31 & 8 \\
Sieger and Botsch [2020] & \(\mathrm{C}++\) & 26 & 9 \\
Alexa [2020] & \(\mathrm{C}++\) & 21 & 8 \\
Preiner et al. [2019] & Python & 15 & 9 \\
Panozzo et al. [2014] & \(\mathrm{C}++\) & 14 & 5 \\
Alexa et al. [2020] & \(\mathrm{C}++\) & 12 & 6 \\
Jakob et al. [2015] & \(\mathrm{C}++\) & 7 & 4 \\
De Goes and James [2017] & \(\mathrm{C}++\) & 6 & 1 \\
Jeruzalski et al. [2018] & \(\mathrm{C}++\) & 5 & 2 \\
\hline
\end{tabular}

\section*{Integrating with Existing Code}
\begin{tabular}{lccc}
\hline Source & Language & LoC (original) & LoC (IDLA) \\
\hline Jacobson et al. [2013] & \(\mathrm{C}++\) & 31 & 8 \\
Sieger and Botsch [2020] & \(\mathrm{C}++\) & 26 & 9 \\
Alexa [2020] & \(\mathrm{C}++\) & 21 & 8 \\
Preiner et al. [2019] & Python & 15 & 9 \\
Panozzo et al. [2014] & \(\mathrm{C}++\) & 14 & 5 \\
Alexa et al. [2020] & \(\mathrm{C}++\) & 12 & 6 \\
Jakob et al. [2015] & \(\mathrm{C}++\) & 7 & 4 \\
De Goes and James [2017] & \(\mathrm{C}++\) & 6 & 1 \\
Jeruzalski et al. [2018] & \(\mathrm{C}++\) & 5 & 2 \\
\hline
\end{tabular}

\section*{Integrating with Existing Code}
\begin{tabular}{lccc}
\hline Source & Language & LoC (original) & LoC (IVLA) \\
\hline Jacobson et al. [2013] & \(\mathrm{C}++\) & 31 & 8 \\
Sieger and Botsch [2020] & \(\mathrm{C}++\) & 26 & 9 \\
Alexa [2020] & \(\mathrm{C}++\) & 21 & 8 \\
Preiner et al. [2019] & Python & 15 & 9 \\
Panozzo et al. [2014] & \(\mathrm{C}++\) & 14 & 5 \\
Alexa et al. [2020] & \(\mathrm{C}++\) & 12 & 6 \\
Jakob et al. [2015] & \(\mathrm{C}++\) & 7 & 4 \\
De Goes and James [2017] & \(\mathrm{C}++\) & 6 & 1 \\
Jeruzalski et al. [2018] & \(\mathrm{C}++\) & 5 & 2 \\
\hline
\end{tabular}

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations
implementable
- derivations
partial derivatives, gradients and unsupported integration
- complicated optimizationunsupported control flow
- unsupported operators

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations

- implementable
- derivations
partial derivatives, gradients and unsupported integration
- complicated optimization
- unsupported control flow
- unsupported operators

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations
implementablederivations
partial derivatives, gradients and unsupported integration
- complicated optimizationunsupported control flow
- unsupported operators

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations

- implementable
- derivationspartial derivatives, gradients and unsupported integration
- complicated optimizationunsupported control flow
- unsupported operators

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations

- implementable
- derivations
partial derivatives, gradients and unsupported integrationcomplicated optimization
- unsupported control flow
- unsupported operators

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations

- implementable
- derivations
- partial derivatives, gradients and unsupported integration
- complicated optimizationunsupported control flow
- unsupported operators

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations
implementable
- derivations
- partial derivatives, gradients and unsupported integration
- complicated optimizationunsupported control flowunsupported operators

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations

- implementable
partial derivatives, gradients and unsupported integration
- complicated optimizationunsupported control flow
- unsupported operators

\section*{A Statistical Estimate of Applicability}
- We randomly sampled 100 of all 1987 numbered equations

- implementable
- complicated optimization
- unsupported control flow
- unsupported operators

\section*{User study}

\section*{User study}
- 8 CS PhD students

\section*{User study}
- 8 CS PhD students
- Implemented 3 formula using both IOLA and their preferred programming environment (half C++/Eigen, half Python/NumPy)

\section*{User study}
- 8 CS PhD students
- Implemented 3 formula using both IOLA and their preferred programming environment (half C++/Eigen, half Python/NumPy)

\section*{Simple}

Given an \(n \times n\) matrix \(A\), an \(n\)-vector \(b\), and a constant \(c\), compute the quadratic form for an \(n\)-vector \(x\) :
\[
x^{T} A x+b^{T} x+c
\]

\section*{User study}
- 8 CS PhD students
- Implemented 3 formula using both IOLA and their preferred programming environment (half C++/Eigen, half Python/NumPy)

\section*{Medium}

Multiply a 3D vertex position \(v\) by a weighted average of \(4 \times 4\) transformation matrices \(T_{i}\). The corresponding weights are \(w_{i}\). Assume the vertex position \(v\) is already in homogeneous coordinates, which is to say \(v\) is a 4 -vector.
\[
u=\sum_{i} w_{i} T_{i} v
\]

\section*{User study}
- 8 CS PhD students
- Implemented 3 formula using both IOLA and their preferred programming environment (half C++/Eigen, half Python/NumPy)

\section*{Complex}

Create an edge-weighted adjacency matrix. Given a set of edges \(E\) for a graph of \(n\) vertices \(v_{i}\), create the matrix:
\[
A_{i j}= \begin{cases}\frac{1}{\left\|v_{i}-v_{j}\right\|} & \text { if } i, j \in E \\ 0 & \text { otherwise }\end{cases}
\]

\section*{Qualitative data from our user study}

\section*{Qualitative data from our user study}

\section*{Qualitative data from our user study}

Q1: It was easy to learn to use I LA.
\begin{tabular}{l|lllll} 
neutral & agree & & & strongly agree \\
\hline & & \(p=0.004\) \\
\(0 \%\) & \(20 \%\) & \(40 \%\) & \(60 \%\) & \(80 \%\) & \(100 \%\)
\end{tabular}

\section*{Qualitative data from our user study}

Q1: It was easy to learn to use I LA.
\begin{tabular}{l|llll} 
neutral & agree & & & strongly agree \\
\hline \(0 \%\) & \(20 \%\) & \(40 \%\) & \(60 \%\) & \(80 \%\)
\end{tabular}

Q2: I prefer I LA to the other programming language I used.


\section*{Qualitative data from our user study}

Q1: It was easy to learn to use I LA.
\begin{tabular}{l|llll} 
neutral agree & & & strongly agree \\
\hline & \(20 \%\) & \(40 \%\) & \(60 \%\) & \(80 \%\)
\end{tabular}

Q2: I prefer I LA to the other programming language I used.


Q3: I LA looks like linear algebra formula I see in papers or on a chalkboard.

\section*{User study observations and conclusions}

\section*{User study observations and conclusions}
- The average time for each task
\begin{tabular}{lrrr}
\hline & simple & medium & complex \\
\hline IVLA (minutes) & 10 & 9 & 12 \\
Other (minutes) & 4 & 6 & 12 \\
Significance \((p)\) & \(\mathbf{0 . 0 0 5}\) & 0.065 & 0.862 \\
\hline
\end{tabular}

\section*{User study observations and conclusions}
- The average time for each task
\begin{tabular}{lrrr}
\hline & simple & medium & complex \\
\hline IVLA (minutes) & 10 & 9 & 12 \\
Other (minutes) & 4 & 6 & 12 \\
Significance \((p)\) & \(\mathbf{0 . 0 0 5}\) & 0.065 & 0.862 \\
\hline
\end{tabular}
- Users can accomplish a range of tasks in IVLA within 15 minutes

\section*{User study observations and conclusions}
- The average time for each task
\begin{tabular}{lrrr}
\hline & simple & medium & complex \\
\hline IVLA (minutes) & 10 & 9 & 12 \\
Other (minutes) & 4 & 6 & 12 \\
Significance \((p)\) & \(\mathbf{0 . 0 0 5}\) & 0.065 & 0.862 \\
\hline
\end{tabular}
- Users can accomplish a range of tasks in IDLA within 15 minutes
- Users perceive that IDLA looks similar to conventional math

\section*{Limitation: Unsupported equations}

\section*{Limitation: Unsupported equations}
- Unsupported operators
\[
\begin{equation*}
\Sigma_{i}^{v}=\operatorname{cov}\left(v_{i} \underline{\cup} \mathcal{N}(i)\right)+\sigma_{0}^{2}, \tag{15}
\end{equation*}
\]

\section*{Limitation: Unsupported equations}
- Unsupported operators
\[
\begin{equation*}
\Sigma_{i}^{v}=\operatorname{cov}\left(v_{i} \cup \mathcal{N}(i)\right)+\sigma_{0}^{2} I, \tag{15}
\end{equation*}
\]
- Multiple conditions
\(w_{\text {avr }}(q)=\frac{1}{\pi} \begin{cases}\frac{1}{40}\left(15 q^{3}-36 q^{2}+40\right) & 0 \leq q<1, \\ \left.\frac{-3}{4 q^{3}} \frac{q^{6}}{6}-\frac{6 q^{5}}{5}+3 q^{4}-\frac{8 q^{3}}{3}+\frac{1}{15}\right) & 1 \leq q<2, \\ \frac{\xi^{2}}{4 q^{3}} & q \geq 2 .\end{cases}\)

\section*{Limitation: Unsupported equations}
- Unsupported operators
\(\Sigma_{i}^{v}=\operatorname{cov}\left(v_{i} \underline{\cup} \mathcal{N}(i)\right)+\sigma_{0}^{2} I\),
- Derivations
\[
\begin{equation*}
\sum_{j=1}^{n} P_{i, j} \leq f_{0}\left(x_{i}\right), \forall i \tag{7}
\end{equation*}
\]

\section*{Limitation: Unsupported equations}
- Unsupported operators
\(\Sigma_{i}^{v}=\operatorname{cov}\left(v_{i} \underline{\cup} \mathcal{N}(i)\right)+\sigma_{0}^{2} I\),
- Derivations
\[
\begin{equation*}
\sum_{j=1}^{n} P_{i, j} \leq f_{0}\left(x_{i}\right), \forall i \tag{7}
\end{equation*}
\]

\section*{Limitation: Unsupported equations}
- Unsupported operators
\[
\begin{equation*}
\Sigma_{i}^{v}=\operatorname{cov}\left(v_{i} \cup \mathcal{N}(i)\right)+\sigma_{0}^{2} I, \tag{15}
\end{equation*}
\]
- Derivations
\[
\begin{equation*}
\sum_{j=1}^{n} P_{i, j} \leq f_{0}\left(x_{i}\right), \forall i \tag{7}
\end{equation*}
\]
\[
\begin{equation*}
\lambda_{1,2}=2 \frac{\partial \Psi_{5}}{\partial I_{5}} \tag{13}
\end{equation*}
\]
- Unsupported optimization
\[
\begin{equation*}
\mu(\mathbf{X})=\max _{1 \leq i \neq j \leq n} \frac{\left|\mathbf{X}_{., i}^{T} \mathbf{X}_{., j}\right|}{\left\|\mathbf{X}_{., i}\right\|_{2}\left\|\mathbf{X}_{., j}\right\|_{2}} . \tag{20}
\end{equation*}
\]

\section*{Limitation: Unsupported equations}
- Unsupported operators
\(\Sigma_{i}^{v}=\operatorname{cov}\left(v_{i} \underline{\mathcal{N}}(i)\right)+\sigma_{0}^{2} I\),
- Derivations
\[
\begin{equation*}
\sum_{j=1}^{n} P_{i, j} \leq f_{0}\left(x_{i}\right), \forall i \tag{7}
\end{equation*}
\]
- Unsupported optimization
\[
\begin{equation*}
\mu(\mathbf{X})=\max _{1 \leq i \neq j \leq n} \frac{\left|\mathbf{X}_{., i}^{T} \mathbf{X}_{., j}\right|}{\left\|\mathbf{X}_{., i}\right\|_{2}\left\|\mathbf{X}_{., j}\right\|_{2}} . \tag{20}
\end{equation*}
\]
- Multiple conditions
\[
w_{\mathrm{avr}}(q)=\frac{1}{\pi} \begin{cases}\frac{1}{40}\left(15 q^{3}-36 q^{2}+40\right) & 0 \leq q<1 \\ \left.\frac{-3}{4 q^{3}} \frac{q^{6}}{6}-\frac{6 q^{5}}{5}+3 q^{4}-\frac{8 q^{3}}{3}+\frac{1}{15}\right) & 1 \leq q<2 \\ \frac{q^{2}}{4 q^{3}} & q \geq 2\end{cases}
\]
- Derivatives
\[
\begin{equation*}
\lambda_{1,2}=2 \frac{\partial \Psi_{5}}{\partial I_{5}}, \tag{13}
\end{equation*}
\]
- Others
\[
\Psi(x, y, z, t)=\iiint \Phi\left(k_{x}, k_{y}, k_{z}\right) e^{2 \pi i\left(k_{x} x+k_{y} y+k_{z} z-f t\right)} \mathrm{d} k_{x} \mathrm{~d} k_{y} \mathrm{~d} k_{z}
\]

\section*{Limitation: Unsupported equations}
- Unsupported operators
\(\Sigma_{i}^{v}=\operatorname{cov}\left(v_{i} \underline{\mathcal{N}}(i)\right)+\sigma_{0}^{2} I\),
- Derivations
\[
\begin{equation*}
\sum_{j=1}^{n} P_{i, j} \leq f_{0}\left(x_{i}\right), \forall i \tag{7}
\end{equation*}
\]
- Unsupported optimization
\[
\begin{equation*}
\mu(\mathbf{X})=\max _{1 \leq i \neq j \leq n} \frac{\left|\mathbf{X}_{., i}^{T} \mathbf{X}_{., j}\right|}{\left\|\mathbf{X}_{., i}\right\|_{2}\left\|\mathbf{X}_{., j}\right\|_{2}} \tag{20}
\end{equation*}
\]
- Multiple conditions
\[
w_{\mathrm{avr}}(q)=\frac{1}{\pi} \begin{cases}\frac{1}{40}\left(15 q^{3}-36 q^{2}+40\right) & 0 \leq q<1 \\ \left.\frac{-3}{4 q^{3}} \frac{q^{6}}{6}-\frac{6 q^{5}}{5}+3 q^{4}-\frac{8 q^{3}}{3}+\frac{1}{15}\right) & 1 \leq q<2 \\ \frac{q^{2}}{4 q^{3}} & q \geq 2\end{cases}
\]
- Derivatives
\[
\begin{equation*}
\lambda_{1,2}=2 \frac{\partial \Psi_{5}}{\partial I_{5}}, \tag{13}
\end{equation*}
\]
- Others
\[
\begin{gathered}
\Psi(x, y, z, t)=\iiint \Phi\left(k_{x}, k_{y}, k_{z}\right) e^{2 \pi i\left(k_{x} x+k_{y} y+k_{z} z-f t\right)} \mathrm{d} k_{x} \mathrm{~d} k_{y} \mathrm{~d} k_{z} .(3) \\
?
\end{gathered}
\]

\section*{Future work}

\section*{Future work}
- Support more language features (tensors, automatic differentiation, integration, optimization)

\section*{Future work}
- Support more language features (tensors, automatic differentiation, integration, optimization)

Systematically Differentiating Parametric Discontinuities
SAI PRRVEEN BANGARU; MIT CSALI
IESSE MENEL


TZU-MAO LL, MTI CSALL
JONATHAN RACAN-KLLEY, MT CSAII


TEG [Bangaru et al. 2021]

\section*{Minimization (10\%)}

\section*{Minimization (10\%)}
\[
\begin{equation*}
\Phi(\mathbf{d})=\min _{\theta} \frac{D_{\text {in }}(\theta, \mathbf{d})}{D_{\text {out }}(\theta, \mathbf{d})} . \tag{10}
\end{equation*}
\]
\[
\begin{equation*}
\mathcal{P}_{o p t}=\arg \min _{\mathcal{P}} \Delta \tau_{\mathcal{S}}(\mathcal{P}) \tag{17}
\end{equation*}
\]
\[
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x} \in \mathcal{M}}{\operatorname{argmin}} \sum_{i} \xi_{i} d\left(\mathbf{x}, \mathbf{x}_{i}\right)^{2} . \tag{4}
\end{equation*}
\]
(3) \(\underset{\boldsymbol{\rho}}{\operatorname{minimize}}\|\boldsymbol{\tau}-\mathbf{A} \boldsymbol{\rho}\|_{2}^{2}+\Gamma(\boldsymbol{\rho})\), s.t. \(0 \leq \boldsymbol{\rho}\)
\[
\begin{equation*}
\max _{\substack{a, \phi_{1}, \ldots, \phi_{N} \\ \text { s.t. } a^{T} a=1}} \sum_{i=1}^{N} \operatorname{dot}\left(p_{i}, \cos \left(\frac{\phi_{i}}{2}\right)+\sin \left(\frac{\phi_{i}}{2}\right) a\right) . \tag{17}
\end{equation*}
\]
(1) \((\hat{\mathbf{I}}, \hat{\mathbf{V}})=\underset{\mathbf{I}, \mathbf{V}}{\arg \min }\|\mathbf{J}-\boldsymbol{\Phi}\|_{2}^{2}+R(\mathbf{V}) \quad\) s.t. \(\quad \mathbf{V}=\mathbf{I}\).
\[
\begin{equation*}
\min _{C} \sum_{i=1}^{N}\left\|x_{i}+\left(R_{i}-I\right) C\right\|^{2} . \tag{3}
\end{equation*}
\]
\[
\begin{gather*}
\min f(\mathbf{v})=\frac{1}{2} \mathbf{v}^{T} \mathbf{A v}-\mathbf{v}^{T} \mathbf{b}  \tag{10}\\
\text { subject to } \mathbf{J v} \geq \mathbf{c}_{n} .
\end{gather*}
\]

\section*{Minimization (10\%)}
```

IOLA: $\operatorname{argmin} _\left(x \in \mathbb{R}^{3}\right) 1 / 2 x^{\top} Q x+q^{\top} x$
s.t.
\|x\| > 1
where
$Q \in \mathbb{R}^{\wedge}(3 \times 3)$
$q \in \mathbb{R}^{3}$

```

Integration (8\%)

Integration (8\%)
\[
\begin{equation*}
T_{\mathrm{ir}}(\boldsymbol{x})=\frac{1}{C} \int_{\mathcal{H}^{2}} \int_{\mathcal{H}^{2}} R_{\mathrm{ir}}\left(\boldsymbol{x}, \boldsymbol{\omega}_{i}, \omega_{o}\right) \mathrm{d} \boldsymbol{\omega}_{i} \mathrm{~d} \boldsymbol{\omega}_{o} \tag{22}
\end{equation*}
\]
\[
\begin{equation*}
\gamma:=\int_{-\pi}^{\pi} d(\varphi) \mathbf{c}(\varphi) \mathrm{d} \varphi \in \mathbb{C}^{m+1} \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
p(\boldsymbol{x}, k)=-\int \frac{i}{4} H_{0}^{(2)}(k\|\boldsymbol{x}-\boldsymbol{y}\|) g(\boldsymbol{y}, k) d \boldsymbol{y} \tag{14}
\end{equation*}
\]
\[
\begin{equation*}
u_{2}(x, y)=\frac{e^{i k z}}{i \lambda z} \iint u_{1}\left(x^{\prime}, y^{\prime}\right) e^{\frac{i k}{2 z}\left\{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right\}} d x^{\prime} d y^{\prime} \tag{4}
\end{equation*}
\]

\section*{Integration (8\%)}
\[
\text { IOLA: } \int_{-} 0 \wedge 3 \text { f_[1, 2] xy } \partial x \text { дy }
\]

\section*{Future work}

\section*{Future work}
- More output languages (PyTorch, TensorFlow, Julia, JavaScript, FORTRAN)

\section*{Future work}
- More output languages (PyTorch, TensorFlow, Julia, JavaScript, FORTRAN)
- Analyze and support more fields (ML, robotics, CV, physics, scientific computing in general)

\section*{Future work}
- More output languages (PyTorch, TensorFlow, Julia, JavaScript, FORTRAN)
- Analyze and support more fields (ML, robotics, CV, physics, scientific computing in general)
- Papers of the future

\section*{Future work}
- More output languages (PyTorch, TensorFlow, Julia, JavaScript, FORTRAN)
- Analyze and support more fields (ML, robotics, CV, physics, scientific computing in general)
- Papers of the future
- compile an entire paper into a library

\section*{Future work}
- More output languages (PyTorch, TensorFlow, Julia, JavaScript, FORTRAN)
- Analyze and support more fields (ML, robotics, CV, physics, scientific computing in general)
- Papers of the future
- compile an entire paper into a library
- improve readability

\section*{Future work}
- More output languages (PyTorch, TensorFlow, Julia, JavaScript, FORTRAN)
- Analyze and support more fields (ML, robotics, CV, physics, scientific computing in general)
- Papers of the future
- compile an entire paper into a library
- improve readability


\section*{Conclusions}

\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem

\section*{Conclusions}
- IVLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas

\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas
- IDLA can be learned quickly

\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas
- IDLA can be learned quickly
- IOLA may reduce translation loss as ideas move from researchers to writers to readers to implementors

\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas
- IOLA can be learned quickly
- IOLA may reduce translation loss as ideas move from researchers to writers to readers to implementors

\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas
- IOLA can be learned quickly
- IOLA may reduce translation loss as ideas move from researchers to writers to readers to implementors

\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas
- IOLA can be learned quickly
- IOLA may reduce translation loss as ideas move from researchers to writers to readers to implementors

\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas
- IOLA can be learned quickly
- IOLA may reduce translation loss as ideas move from researchers to writers to readers to implementors

\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas
- IOLA can be learned quickly
- IOLA may reduce translation loss as ideas move from researchers to writers to readers to implementors


\section*{Conclusions}
- IOLA has the potential to greatly benefit the scientific ecosystem
- IOLA makes it easy to try new ideas
- IOLA can be learned quickly
- IOLA may reduce translation loss as ideas move from researchers to writers to readers to implementors

\section*{Acknowledgments}

\section*{Acknowledgments}
- Anonymous reviewers for their suggestions

\section*{Acknowledgments}
- Anonymous reviewers for their suggestions
- Towaki Takikawa for helpful feedback

\section*{Acknowledgments}
- Anonymous reviewers for their suggestions
- Towaki Takikawa for helpful feedback
- Thomas LaToza for a discussion on evaluating programming languages

\section*{Acknowledgments}
- Anonymous reviewers for their suggestions
- Towaki Takikawa for helpful feedback
- Thomas LaToza for a discussion on evaluating programming languages

\section*{Acknowledgments}
- Anonymous reviewers for their suggestions
- Towaki Takikawa for helpful feedback
- Thomas LaToza for a discussion on evaluating programming languages
- Sponsors:
- Canada Research Chairs Program
- United States National Science Foundation (IIS-1453018)
- Adobe

IOLA code


\section*{iheartla.github.io}```

