
I❤LA: Compilable Markdown for Linear Algebra

YONG LI, George Mason University, USA
SHOAIB KAMIL, Adobe Research, USA
ALEC JACOBSON, University of Toronto and Adobe Research, Canada
YOTAM GINGOLD, George Mason University, USA

\begin{align*}

 A_{i, j} & = \begin{cases}

 1 & \text{if} \left(i, j \right) \in E \\

 0 & \text{otherwise} \end{cases} \\

 D_{i,i} & = \sum_j A_{i, j} \\

 L & = D^{-1}\left(D - A \right) \\

\intertext{where}

 E & \in \{\mathbb{Z} \times \mathbb{Z}\} \\

 A & \in \mathbb{R}^{ n \times n } \\

 n & \in \mathbb{Z}

\end{align*}
A = sparse(E(:,1),E(:,2),1,n,n);

D = diag(sum(A,2));

L = D\(D-A);

\centering

\resizebox{\textwidth}{!}

{

\begin{minipage}[c]{\textwidth}

\begin{align*}

\textit{A}_{\textit{i}, \textit{j}} & = \begin{cases} 1 & \text{if} \left(\textit{i}, \textit{j} \right) \in \textit{E} \\ 0 & \text{otherwise} \end{cases} \\

\textit{D}_{\textit{i},\textit{i}} & = \sum_\textit{j} \textit{A}_{\textit{i}, \textit{j}} \\

\textit{L} & = \textit{D}^{-1}\left(\textit{D} - \textit{A} \right) \\

\intertext{where}

\textit{E} & \in \{\mathbb{Z} \times \mathbb{Z}\} \\

\textit{A} & \in \mathbb{R}^{ \textit{n} \times \textit{n} } \\

\textit{n} & \in \mathbb{Z}

\end{align*}

\end{minipage}

}

LaTeX output

import numpy as np

from scipy import sparse as sp

A = sp.coo_matrix((np.ones(len(E)), np.asarray(E).T), shape=(n,n))

D = sp.dia_matrix((A.sum(1).T,0), shape=A.shape)

L = sp.dia_matrix((1/D.diagonal(),0),shape=D.shape) @ (D - A)
using namespace Eigen;

std::vector<Eigen::Triplet<double>> ijv;

for(int e = 0;e<E.rows();e++) {

 ijv.emplace_back(E(e,0), E(e,1), 1);

}

SparseMatrix<double> A(n,n);

A.setFromTriplets(ijv.begin(),ijv.end());

DiagonalMatrix<double,Dynamic> D(A*VectorXd::Ones(A.cols()));

DiagonalMatrix<double,Dynamic> Dinv(D.diagonal().array().pow(-1).matrix());

SparseMatrix<double> L = Dinv*(SparseMatrix<double>(D) - A);

C++/Eigen

Chalkboard math ❤

function output = laplacian(E, n)

 assert(size(E,2) == 2)

 assert(numel(n) == 1);

 Aij_0 = zeros(2,0);

 Avals_0 = zeros(1,0);

 for i = 1:n

 for j = 1:n

 if ismember([i, j],E,'rows')

 Aij_0(1:2,end+1) = [i;j];

 Avals_0(end+1) = 1;

 end

 end

 end

 sparse_0 = sparse(Aij_0(1,:),Aij_0(2,:),Avals_0,n,n);

 A = sparse_0;

 Dii_0 = zeros(2,0);

 Dvals_0 = zeros(1,0);

 for i = 1:n

 sum_0 = 0;

 for j = 1:size(A,2)

 sum_0 = sum_0 + A(i, j);

 end

 Dii_0(1:2,end+1) = [i;i];

 Dvals_0(end+1) = sum_0;

 end

 D = sparse(Dii_0(1,:),Dii_0(2,:),Dvals_0,n,n);

 L = (D\(D - A));

 output.A = A;

 output.D = D;

 output.L = L;

end

A_ij = { 1 if (i,j) ∈ E
 0 otherwise

D_ii = ∑_j A_i,j
L = D⁻¹(D - A)

where

E ∈ { ℤ × ℤ }
A ∈ ℝ^(n × n)
n ∈ ℤ

import numpy as np

import scipy

import scipy.linalg

from scipy import sparse

from scipy.integrate import quad

from scipy.optimize import minimize

def laplacian(E, n):

 assert isinstance(E, list) and len(E) > 0

 assert len(E[0]) == 2

 assert np.ndim(n) == 0

 _Aij_0 = []

 _Avals_0 = []

 for i in range(1, n+1):

 for j in range(1, n+1):

 if (i, j) in E:

 _Aij_0.append((i-1, j-1))

 _Avals_0.append(1)

 _sparse_0 = scipy.sparse.coo_matrix((_Avals_0, np.asarray(_Aij_0).T), shape=(n, n))

 A = _sparse_0

 _Dii_0 = []

 _Dvals_0 = []

 for i in range(1, n+1):

 _sum_0 = 0

 for j in range(1, A.shape[0]+1):

#include <Eigen/Core>

#include <Eigen/Dense>

#include <Eigen/Sparse>

#include <iostream>

#include <set>

laplacianResultType laplacian(

 const std::set<std::tuple< int, int > > & E,

 const int & n)

{

 Eigen::SparseMatrix<double> A(n, n);

 std::vector<Eigen::Triplet<double> > tripletList_A;

 for(int i=1; i<=n; i++){

 for(int j=1; j<=n; j++){

 if(E.find(std::tuple< int, int >(i, j)) != E.end()){

 tripletList_A.push_back(Eigen::Triplet<double>(i-1, j-1, 1));

 }

 }

 }

 A.setFromTriplets(tripletList_A.begin(), tripletList_A.end());

 Eigen::SparseMatrix<double> D(n, n);

 std::vector<Eigen::Triplet<double> > tripletList_D;

 for(int i=1; i<=n; i++){

 double sum_0 = 0;

 for(int j=1; j<=A.cols(); j++){

 sum_0 += A.coeff(i-1, j-1);

 }

 tripletList_D.push_back(Eigen::Triplet<double>(i-1, i-1, sum_0));

 }

 D.setFromTriplets(tripletList_D.begin(), tripletList_D.end());

 Eigen::SparseQR <Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int> > solver_0;

 solver_0.compute(D);

 Eigen::SparseMatrix<double> L = solver_0.solve((D - A));

 return testResultType(A, D, L);

}

void generateRandomData(std::set<std::tuple< int, int > > & E,

 int & n)

{

 n = rand() % 10;

 const int dim_0 = rand()%10;

 for(int i=0; i<dim_0; i++){

 E.insert(std::make_tuple(rand()%10, rand()%10));

 }

}

int main(int argc, char *argv[])

{

 srand((int)time(NULL));

 std::set<std::tuple< int, int > > E;

 int n;

 generateRandomData(E, n);

 testResultType func_value = test(E, n);

 std::cout<<"return value:\n"<<func_value.L<<std::endl;

 return 0;

}

Python
MATLAB

LaTeX

compilation
manual translation

LaTeX

MATLAB

Python

C++/Eigen

Fig. 1. Left: Mathematical notation has evolved over centuries to efficiently communicate technical concepts such as the sparse graph Laplacian construction
in the top left. Meanwhile, programming languages communicate with a machine typically with a reduced character set and syntax causing handwritten
translation of mathematics to visually stray far from the “chalkboard math” and from each other. Right: I❤LA is a novel domain specific language for linear
algebra. The I❤LA code written with rich unicode symbols visually resembles chalkboard math, while still being a semantically well-defined programming
language compilable to various target languages: LaTeX, MATLAB, Python, C++.

Communicating linear algebra in written form is challenging: mathemati-
ciansmust choose betweenwriting in languages that producewell-formatted
but semantically-underdefined representations such as LaTeX; or languages
with well-defined semantics but notation unlike conventional math, such as
C++/Eigen. In both cases, the underlying linear algebra is obfuscated by the
requirements of esoteric language syntax (as in LaTeX) or awkward APIs
due to language semantics (as in C++). The gap between representations

Authors’ addresses: Yong Li, George Mason University, USA, yli69@gmu.edu; Shoaib
Kamil, Adobe Research, USA, kamil@adobe.com; Alec Jacobson, University of Toronto
and Adobe Research, Canada, jacobson@cs.toronto.edu; Yotam Gingold, George Ma-
son University, USA, ygingold@gmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/12-ART264 $15.00
https://doi.org/10.1145/3478513.3480506

results in communication challenges, including underspecified and irrepro-
ducible research results, difficulty teaching math concepts underlying com-
plex numerical code, as well as repeated, redundant, and error-prone trans-
lations from communicated linear algebra to executable code. We introduce
I❤LA, a language with syntax designed to closely mimic conventionally-
written linear algebra, while still ensuring an unambiguous, compilable in-
terpretation. Inspired byMarkdown, a language forwriting naturally-structured
plain text files that translate into valid HTML, I❤LA allows users to write
linear algebra in text form and compile the same source into LaTeX, C++/Eigen,
Python/NumPy/SciPy, and MATLAB, with easy extension to further math
programming environments. We outline the principles of our language de-
sign and highlight design decisions that balance between readability and
precise semantics, and demonstrate through case studies the ability for I❤LA
to bridge the semantic gap between conventionally-written linear algebra
and unambiguous interpretation in math programming environments.

CCS Concepts: • Computing methodologies → Graphics systems and
interfaces; • Software and its engineering → Domain specific lan-
guages; • Mathematics of computing → Mathematical software.

Additional KeyWords and Phrases: linear algebra,mathematical input, domain-
specific language, compiler, scientific computing

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480506

264:2 • Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold

ACM Reference Format:
Yong Li, Shoaib Kamil, Alec Jacobson, and YotamGingold. 2021. I❤LA: Com-
pilable Markdown for Linear Algebra. ACM Trans. Graph. 40, 6, Article 264
(December 2021), 14 pages. https://doi.org/10.1145/3478513.3480506

1 INTRODUCTION
Linear algebra has become the lingua franca of computer graph-
ics and other fields of scientific computing. Matrices and vectors
allow researchers to succinctly communicate mathematical expres-
sions involving arbitrary amounts of data. Mathematical notation
using these constructs is a human language that continues to evolve
over time to be readable yet precise, while eliding details unneces-
sary for communication. It allows for communicating expressions
and formulae to other researchers, practitioners, educators, and stu-
dents, often by publishing scientific papers.

Communicating expressions and formulae requires writing them
in a language that produces mathematical notation, such as La-
TeX, with esoteric syntax that is not readily understandable with-
out compiling to a print-ready document. On the other hand, imple-
menting mathematical expressions entails translating them into a
specific programming environment: a language and linear algebra
package, with its own specific syntax dissimilar to languages de-
signed for expressing syntax.Thus, succinct expressionsmust be re-
written multiple times in languages less legible than linear algebra
(Fig. 1, left). This has the potential to introduce bugs. Worse, imple-
menters, in both academia and industry, favor different program-
ming environments—and these environments change over time. To
participate in research and development, everyone must become
a highly proficient implementer, which excludes many from con-
tributing. This leads to an explosion of redundant effort, differing
implementations, bugs, and a less diverse community.

To address these issues, we introduce I❤LA, a language whose
syntax is designed to be as close as possible to conventionally writ-
ten math yet can be written in a plain text editor (Fig. 1, right),
all while ensuring an unambiguous, compilable interpretation. To
achieve this, we make language design decisions that accord with
mathematical convention rather than conventional programming
languages. For example, we prioritize single-letter identifiers (pos-
siblywithUnicodemarks), identifier juxtaposition ismultiplication,
and we promote Unicode characters (which are as easy to input as
TeX commands and no more difficult than typing a function name
in a traditional programming language) as operators and variable
names.

Our current compiler can output LaTeX, Python/NumPy/SciPy,
MATLAB, and C++/Eigen, creating a publishable artifact and refer-
ence implementations that guarantee replication, all from the same
source file. I❤LA includes syntax for creatingmatrices (dense, sparse,
and block), for algebraic and linear algebra expressions involving
matrices and vectors, for sets and sequences, for summation and
integration, and for constrained minimization. I❤LA’s visual simi-
larity to conventional math comes from design decisions that bal-
ance three competing objectives: the language must look as close
as possible to conventional math notation syntactically; it must be
writable in a plain text editor (with Unicode support); and the lan-
guage must retain unambiguous semantics that can be compiled to
common programming languages and linear algebra packages.

In designing I❤LA, we set out to design a language whose no-
tation matched the notation commonly used in computer graphics
papers when communicating linear algebra concepts. While I❤LA
is likely applicable outside of computer graphics, we designed it
to solve problems in the graphics community as a first step. I❤LA
provides the ability to write individual formulas, such as those com-
monly found in computer graphics publications, rather than full
applications that use these formulas. Towards this end, we system-
atically analyzed all numbered equations in ACM SIGGRAPH 2019
papers. We pursued syntax-driven development. We carefully con-
sidered consensus-syntax for the math we support. We describe
the core design decisions and simplifications that make it tractable
to create I❤LA without sacrificing readability, while still support-
ing conventional notation and clear semantics. We demonstrate the
use of I❤LA through case studies of graphics algorithms that illus-
trate how the language enables practitioners to write in plain text
and use the same source for generating output suitable for publica-
tions/communication as well as reference implementations in both
statically and dynamically typed languages. We performed a user
study to understand how experienced practitioners learn and per-
ceive I❤LA.

2 RELATED WORK
For researchers and practitioners alike to make use of each oth-
ers’ techniques, they must translate the linear algebra expressions
into a specific programming environment. Examples today include:
Python with NumPy/SciPy or TensorFlow or PyTorch; C/C++ with
Eigen or PETSc or Armadillo or BLAS; MATLAB; Fortran; R; and Ju-
lia. Some environments are less than 10 years old (Julia, Armadillo,
TensorFlow, PyTorch). Some previously popular environments have
fallen out of fashion or were updated in a backwards-incompatible
manner (TensorFlow 2 versus 1, PyTorch versus Torch,Theano, Python
3 versus 2). Recent domain-specific languages like TACO [Kjolstad
et al. 2017], BLAC [Spampinato and Püschel 2014], YALMIP [Löf-
berg 2004], and GENO [Laue et al. 2019] produce highly efficient
computation but also define their own input languages. None of
these languages take input as legible, conventionally-written math.

Several programming languages allow users to write expressions
that resemble or borrow notation from conventional mathematics
in some ways. Notably, Fortress [Allen et al. 2005] also defined
juxtaposition as multiplication. Julia [Bezanson et al. 2017] allows
mathematical glyphs to be used as infix function operators. We

Table 1. A comparison of several languages designed to resemble conven-
tional mathematical notation. This formula was used in Python Enhance-
ment Protocol 465 [Smith 2014] to motivate the introduction of a dedicated
matrix multiplication operator. AsciiMath and LaTeX are not executable.

I❤LA S = (Hβ-r)ᵀ(HVHᵀ)⁻¹(Hβ-r)

MATLAB S = (H*beta-r)'*((H*V*H')\(H*beta-r))

Mathematica S = (H.β-r)ᵀ.LinearSolve[(H.V.Hᵀ),(H.β-r)]

Julia S = (H*β-r)'*((H*V*H')\(H*β-r))

Python/NumPy S = (H@β-r).T@solve((H@V@H.T),(H@β-r))

AsciiMath S = (Hbeta-r)^TT(HVH^TT)^(−1)(Hbeta-r)
LaTeX S = (H\beta -r)^\top (HVH^\top)^{−1}(H\beta -r)

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480506

I❤LA: Compilable Markdown for Linear Algebra • 264:3

provide a comparison of I❤LA, MATLAB, Mathematica, and Julia
in Table 1. Adopting one of these languages requires embracing
its ecosystem, whereas I❤LA aims to be ecosystem agnostic. Our
technical contribution is a formalization and parser [Ganesalingam
2013] for conventionally-written mathematics (numerical linear al-
gebra). We address how equations are typed by paper writers and
others communicating using mathematical notation. The Fortress
language has been abandoned, so code written in it can no longer
be run. This argues for our meta-compilation approach, which can
re-target I❤LA to new output languages as they arise. Languages
like Lean [deMoura et al. 2015], Agda [Norell 2007], and Coq [Team
2021] target a very different portion of mathematics (proofs and
formal verification). APL [Iverson 2007] introduced new, powerful
notation unlike conventional mathematics.

Lightweight markup syntaxes have become enormously popular
for prose and mathematics. I❤LA is the first that can be compiled
and executed. Markdown [Gruber and Swartz 2004] is an almost
ubiquitous markup language for verbal language text. It is designed
to be easy to read and write, matching existing plain text conven-
tions where possible, yet outputs to markup languages with a more
explicit syntax like HTML. Its widespread adoption is a testament
to its ease of use and the benefits that the structured output provide
(enhanced formatting and separation of style from content). We are
inspired by the ease and popularity of Markdown, and wish to cre-
ate a similar language for mathematics, with important benefits to
the structured output (working algorithms for scientific replicabil-
ity).

There are several markup languages for writing mathematical
notation in plain text, such as LaTeX [Goossens et al. 1994], Asci-
iMath [Jipsen 2005], and MathML [W3C 2016]. These languages
have seen widespread adoption. They are designed to allow users
to input all mathematical notation. However, they do not consider
the interpretation of the equations themselves. An expression writ-
ten using mathematical notation expresses a logical statement. In
general, such statements do not specify operations to be performed.
Perhaps surprisingly, mathematical notation may still be ambigu-
ous or require careful work or additional context to specify in suffi-
cient detail to correspond to a compilable algorithm [Ganesalingam
2013]. Mathematical expressions by themselves do not contain in-
formation about the data types of the symbols (e.g., which vari-
ables are scalars, vectors, or matrices). When interpreting plain
text input, “sin” can refer to the “sine” function or to the prod-
uct of three scalars “s”, “i”, and “n”. In I❤LA, we aim to define a
syntax that is as lightweight and similar to conventionally written
math as possible—containing virtually no markup meta-symbols—
for a subset of mathematical notation that can be unambiguously
interpreted and compiled. Our project to formalize mathematical
notation shares motivation with Leslie Lamport’s quest to formal-
ize modern proof writing [2012].

Domain-specific languages that aim to make computer graphics
practitioners more productive have a long history, making it easier
to express shading calculations [Hanrahan and Lawson 1990; He
et al. 2018; Perlin 1985], simulations [Bernstein et al. 2016; Kjolstad
et al. 2016], non-linear optimization problems [Devito et al. 2017],
high-performance routines [Hu et al. 2019; Ragan-Kelley et al. 2012;
Yang et al. 2016], integration [Bangaru et al. 2021], and diagrams

Fig. 2. I❤LA combines conventional syntax with unambiguous execution.
Existing environments for inputting linear algebra notation do not consider
the interpretability of the expressions. Existing programming languages
can be unambiguously compiled, but use a syntax quite unlike conventional
mathematical notation. Pseudocode, while readable, cannot be compiled or
validated.

[Ye et al. 2020]. Several type systems and languages have been pro-
posed to reduce coordinate system and unit errors in graphics [Geisler
et al. 2020; Ou and Pellacini 2010; Preussner 2018]. None of these
languages supports conventional mathematical notation as we do.

3 DESIGN OVERVIEW
I❤LA is designed to balance expressivity with guaranteed-correct
baseline implementations of formulas fast enough for testing and
evaluation. We choose to target individual functions, as usually de-
scribed inline in research papers and textbooks, eschewing func-
tionality required for creating stand-alone programs. Thus, I❤LA
excludes constructs such as file input and output or complex con-
trol flow.

The design of I❤LA’s syntax and semantics required us to nav-
igate a path between conventional mathematical notation—what
one would write on a chalkboard or find in a paper—and the need
to unambiguously interpret and compile the notation into machine
executable statements (in another programming language). For ex-
ample, mathematical notation is often used to encode logical steps
in service of a derivation or proof. For these expressions, there is
nothing obvious to compute. Mathematical notation is also visu-
ally complex, involving a wide variety of glyphs in complex ar-
rangements, such as subscripts, superscripts, and the 2D arrange-
ment of matrix elements. Furthermore, mathematical notation is
context-dependent, with 𝑓 ′ sometimes indicating the derivative of
a function 𝑓 and sometimes purely as a decoration (“f prime”), or
inconsistent, such as sin2 (𝑥) = sin(𝑥) sin(𝑥) whereas sometimes
𝑓 2 (𝑥) = 𝑓 (𝑓 (𝑥)). This is in contrast to programming languages,
which have historically assumed linear ASCII input, scalar types,
and a simple set of operators. Yet the prevalence of linear algebra
eventually forced Python, a mainstream programming language, to
adopt a dedicated matrix multiplication symbol for a cleaner pre-
sentation of expressions [Smith 2014].

We have designed the syntax of I❤LA to follow conventional
linear algebra notation while still being expressible in a plain text
editor and compilable (Figs. 1 & 2). I❤LA’s readability comes from
design decisions we make to keep the syntax as close to written
math as we can while remaining unambiguously parseable.

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

264:4 • Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold

To motivate our decisions and inform our choice of features be-
yond core operations, we tabulated all numbered equations and
some unnumbered equations in all technical papers published at
ACM SIGGRAPH 2019. Out of the 1987 total equations:
98% use only single-letter variables (often with decorations),
50% use externally defined functions,
23% use summations (

∑
),

14% use various norms (e.g., ∥𝐴𝑥 − 𝑏∥2),
10% use minimization (min),
10% use common trigonometric functions, and
8% use integrals (

∫
).

We used these observations to guide our design decisions, and
further refined syntax and expanded the list of operators based
on our experiences using I❤LA to implement common operations
found in computer graphics, physical simulation, image processing,
and geometry processing, as well as general scientific computing.

In Section 4, we illustrate some notable design decisions through
examples, including:

(1) Juxtaposition is multiplication. This is the mathematical con-
vention.

(2) Single-letter identifiers are encouraged. This eliminates am-
biguity with multiplication and eliminates the need for com-
mas, e.g., when accessing matrix elements with 𝑖 𝑗 subscripts.

(3) Compatiblematrix and vector dimensions are statically checked,
even when they are parameters rather than fixed.

(4) Matrices can be formatted with 2D elements separated by
spaces and newlines.

(5) Variables cannot be re-defined, sidestepping the potential am-
biguity between mathematical equality and variable assign-
ment.

(6) Mathematical symbols (operators and variables and marks)
are written using Unicode, which makes I❤LA look like con-
ventional mathematics. Unicode is ubiquitous. Modern text
editors and operating systems support convenient methods
to enter Unicode (e.g., Vim digraphs, Emacs TeX and Agda
[Norell 2007] inputmodes, macOS system-wide text substitu-
tions). Inputting Unicode is no more difficult than inputting
LaTeX or typing descriptive variable or method names. Our
GUI performs ASCII-to-Unicode substitution1.

I❤LA programs are pure text files and can be written in a user’s
preferred text editor. We have additionally developed a simple edi-
tor with functionality to replace ASCII with Unicode symbols, syn-
tax highlighting, and the ability to view output in multiple lan-
guages simultaneously. As initial output languages, we chose La-
TeX for inclusion in papers, two dynamically typed languages (Python
with NumPy/SciPy and MATLAB), and a statically typed language
(C++/Eigen).

4 A TOUR OF THE LANGUAGE
We illustrate the design decisions underpinning I❤LA via a series
of examples. I❤LA programs are pure text files. Each I❤LA file

1In many cases, I❤LA encourages but does not require Unicode. For example, ∑ can

also bewritten sum and superscripts or subscripts can bewritten ^2 or _2 instead

of ² or ₂ .

compiles to a single function in a target programming language.
The following I❤LA code compiles to a function that computes the
product of three matrices followed by a quadratic form:

given
A ∈ ℝ^(3×n)
B ∈ ℝ^(n×m)
C ∈ ℝ^(m×2)
x ∈ ℝ²

D = ABC
c = xᵀDᵀDx

An I❤LA program consists of mathematical statements declar-
ing variable types (e.g., A ∈ , etc.) or defining variable values (e.g.,
D = , c =). Variables cannot be redefined; single-static assignment
sidesteps the potential ambiguity between mathematical equality
and variable assignment. There is no control flow. The compiled
function returns a struct containing all defined variables (e.g., D
and c) for C++, and an object with named members in Python.
The last statement in an I❤LA program is always returned, even if
it is anonymous (in the member named ret). Undefined variables
(e.g., A , B , C , x) become parameters to the compiled function.
Type declarations are inferred in general and need only be specified
for input parameters (under the heading given or where).

In I❤LA, juxtaposition is multiplication. Juxtaposition compiles
to the appropriatemultiplication:matrix-vector, matrix-matrix, matrix-
scalar, scalar-scalar, or scalar-vector, depending on the types of the
operands. I❤LA does support using ⋅ but does not support using
an asterisk (*) for multiplication, since it is not used in conventional
mathematics notation [Cormullion 2020]. The parser correctly in-
terprets the order of operations for the expression A(y)² depend-
ing onwhether A is a function or a matrix. To do this, the compiler
requires two passes, a first to process type definitions and variable
names, and a second to generate the output.

Because I❤LA encourages single-letter identifiers—as in conven-
tional math—there is no ambiguity parsing ABC or xᵀDᵀDx asmul-
tiplication.Multi-letter identifiers are allowed, but can be confusing—
just as in conventional math. See the language reference supple-
mental materials for details. I❤LA identifiers can use all Unicode
characters andUnicodemarks except a single escape character, back-
tick (`). Backticks can be used to disambiguate otherwise ambigu-
ous identifiers, such as `w_smoothness` .

The type checker verifies the compatibility of matrix, vector, and
sequence dimensions in expressions. For example, AC will report
an error because A ∈ ℝ^(3×n) while C ∈ ℝ^(m×2) , even though
𝑛 and 𝑚 are both arbitrary sizes to be discovered at run-time. For
statically-typed languages, D will be a statically-sized 3×2matrix.

Vectors are columns. Matrix-vector products (e.g., Dx) produce
a vector. A vector-matrix product (e.g., xD) would raise an error.
The transpose of a vector is a row matrix (e.g., xᵀ); a row matrix
times a vector produces a scalar, so that xᵀDᵀDx is equivalent to
the dot product (Dx)⋅(Dx) .

Closest Point. The following I❤LA code compiles to a function
that computes the closest point 𝑞 to a set of 3D lines:

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

I❤LA: Compilable Markdown for Linear Algebra • 264:5

given
p_i ∈ ℝ³: points on lines
d_i ∈ ℝ³: unit directions along lines

P_i = (I₃ - d_i d_iᵀ)
q = (∑_i P_i)⁻¹ (∑_i P_i p_i)

The data types I❤LA supports are can be real ℝ or integer ℤ
scalars; matrices or vectors of scalars; functions taking and return-
ing any of the above; sequences of any of these; or sets of cartesian
products of scalars. A variable declared with one subscript is a se-
quence. In this example, p_i and d_i are sequences of 3D vec-
tors, and P_i is a sequence of 3×3matrices. I₃ is a 3×3 identity
matrix.

Summation in I❤LA takes its bounds from the use of the index in
the summand. In this example, it iterates over the elements of P_i

and p_i in the ∑_i expressions. (I❤LA alternatively supports a
conditional expression for the summation index.) The summation
operator is conservative rather than greedy. It only sums the first
term to its right, not additional terms separated by addition or sub-
traction. There is some ambiguity in conventionally written math
on this matter. For example, is the expression

∑
𝑖 𝑎𝑖 · 𝑏𝑖 + 𝑐 iden-

tical to (∑𝑖 𝑎𝑖 · 𝑏𝑖) + 𝑐 or
∑
𝑖 (𝑎𝑖 · 𝑏𝑖 + 𝑐)? This ambiguity grows

in complexity if there are additional terms also involving summa-
tion, such as

∑
𝑖 𝑎𝑖 + 𝑐 +

∑
𝑗 𝑏 𝑗 or

∑
𝑖 𝑎𝑖 + 𝑐𝑖 +

∑
𝑗 𝑏 𝑗 . We considered

complex rules, such as inspecting whether the summation index ap-
pears in later terms. For guidance, we examined 10 complex summa-
tion formulas found in the ACM SIGGRAPH 2019 proceedings. Of
these, 9 were interpreted correctly with conservative summation.
The Wikipedia Summation article and a Google image search for
“summation” turned up relatively few instances of greedy summa-
tion. Based on this evidence, we adopted conservative summation,
avoiding the need for I❤LA users to consider complex and possibly
surprising behavior.

I❤LA allows comments for type declarations, but not comments
in general. I❤LA is designed to support notation-heavy expressions
and type definitions in papers, not entire papers. It is a future goal
to turn I❤LA into a literate programming environment.

Matrix Examples. I❤LA supports sparse and dense matrices. Ma-
trices can be defined via linear algebra expressions,

A = N⁻¹Mᵀ

directly,

B = [2a 0
3 k+1]

as block matrices,

C = [I M+yxᵀ
Mᵀ 0]

or element-wise, as in

D_ij = M_ij + 7y_i

or

L_ij = { 1 if (i,j) ∈ E
0 otherwise

L_ii = -∑_(j for j != i) L_i,j
where
E ∈ { ℤ×ℤ }
L ∈ ℝ^(n×n)
n ∈ ℤ

The last example requires a type declaration, since the elements
of 𝐿 are defined conditionally; the dimensions of 𝐿 cannot other-
wise be determined, since there may be additional 0’s to the right
or below the elements of 𝐸. In contrast, the identity matrix I and
zero matrix 0 in the block matrix example B have their dimen-
sions unambiguously inferred from other matrices in the row and
column. Spaces (not commas) separate elements in matrix declara-
tions. Commas are not needed to separate matrix subscripts (e.g.,
L_ij).
I❤LA automatically creates sparse matrices for scenarios which

could possibly benefit. I❤LA’s philosophy is to make sensible de-
fault choices to keep from burdening the formula writer, even if
this leads to non-optimal performance. Matrices are sparse when
defined element-wise with a condition, when any matrix in a block
matrix definition is sparse, when adding or multiplying two sparse
matrices, or when sparse is appended to a type declaration. Oth-
erwise, matrices are dense.

Integration and Minimization. I❤LA has syntax for simple inte-
gration:

∫_0^3 ∫_[1, 2] xy ∂x ∂y

and simple constrained function minimization:

argmin_(x ∈ ℝ³) 1/2 xᵀQx + qᵀx
s.t.
‖x‖ > 1
where
Q ∈ ℝ^(3×3)
q ∈ ℝ³

Code generation for these functions is dependent on availability
in the target platform. It is out of scope for I❤LA to provide imple-
mentations for target environments that do not already include nu-
merical integration and function minimization. I❤LA can be used
to target mathematical modeling languages in the future [Dunning
et al. 2017; Grant and Boyd 2014; Laue et al. 2019; Löfberg 2004].

More Examples. I❤LA also supports common operators (e.g., dot
product, cross product, norms, Kronecker product, Hadamard prod-
uct, inverse and backslash division) and a set of built-in functions

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

264:6 • Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold

I LA
Source

Generate Typed
Grammar

Parse

LaTeX
Codegen

Eigen/C++
Codegen

Python
Codegen

LaTeX
Output

C++
Output

Python
Output

Code Generators

MATLAB
Codegen

MATLAB
Output

Fig. 3. Overview of the I❤LA compiler. A lightweight parse phase first ex-
amines the given , where , and import declarations, as well multi-
letter variables that appear on the left-hand side of assignments, to deter-
mine the set of identifiers and their types. Then, the compiler parses the
document into a simple intermediate form. Code generators handle con-
version from the intermediate form to output source.

and constants (trigonometry and linear algebra). See the examples
from the wild (Section 6) and the supplemental language reference
for details.

5 COMPILER
The I❤LA compiler implementation consists of approximately 10,000
lines of Python code and 900 lines of extended Backus-Naur form
(EBNF) text specifying the grammar, built on top of the Tatsu [Añez
2019] parser generator library.While our EBNF is considerably longer
than Python’s approximately 500-line grammar2, conventionalmath
developed over time like a natural language, which is considerably
more difficult to parse. The compiler uses the SymPy library to stat-
ically check compatibility of matrix and vector dimensions in the
presence of blockmatrices and vectors, whose dimensions are sums
of the dimensions of the individual blocks.

Fig. 3 shows an overview of how the compiler works. First, I❤LA
source is parsed using an initial phase that parses given and where
declarations, requests for built-in trigonometric or linear algebra
functions, and multi-letter variables that appear on the left-hand
side of variable definitions, to determine the set of identifiers used
in the file as well as their types.Then, the compiler parses the I❤LA
source into an intermediate representation (IR) that is suitable for
translation to different output languages using output-specific code
generators. The parser is not context-free, since the type and iden-
tifier information extracted during the initial parse is considered
when parsing the I❤LA source into its IR.

We havewritten code generators for LaTeX (standalone andMath-
Jax), C++ using Eigen, Python using NumPy/SciPy, and MATLAB;
the latter threewere chosen to highlight the ability to generate code
for both statically-typed and dynamically-typed languages with 0-
and 1-based indexing. The compiler is designed to be extended to
support additional backend languages. Adding a new output lan-
guage requires implementing a code generator class in Python,which
walks over the IR and produces output source code. Currently, the
2https://docs.python.org/3/reference/grammar.html

C++/Eigen, Python/NumPy/SciPy, and MATLAB code generators
consist of about 1300 lines each of Python code, while the LaTeX
generator is only about 700 lines of code. We believe the relative
succinctness of each backend demonstrates that only a small amount
of effort is required to support additional backend languages.

Our compiler’s second pass dynamically incorporates the identi-
fier and type information extracted from the first pass. On average,
over our test set of 168 I❤LA files, compilation of each I❤LA file
to all four backends takes 0.2 seconds. The source code includes a
lightweight GUI implemented using the wxPython cross-platform
toolkit and a web GUI that runs the compiler in-browser using Py-
odide. Both GUIs display the I❤LA source code, the compiled code
in various output languages, and the rendered LaTeX output side-
by-side. The source code editor performs ASCII-to-Unicode substi-
tutions. The compiler and GUI run in a web browser or natively on
macOS, Windows, and Linux.

6 EVALUATION
To evaluate I❤LA and its expressiveness, we collected a set of

formulas from the literature and a set of existing codebases. We
describe our efforts to understand I❤LA’s capabilities and limita-
tions by implementing the collected formulas and comparing I❤LA
source code to the original typeset formula in the PDF (Section 6.1),
and by implementing formulas in I❤LA and using the generated
output to replace functions in existing codebases (Section 6.2). We
also conducted a statistical estimate of I❤LA’s general applicability
to equations appearing in computer graphics papers (Section 6.3).
Section 7 reports on a user study we conducted.

6.1 Examples from the Wild
We demonstrate I❤LA’s breadth with 26 representative equations
selected from a variety of papers, books, and courses in computer
graphics (Fig. 4). The supplemental materials contain a browsable
gallery showing each original equation; its I❤LA implementation;
the generated C++, Python, and LaTeX; and the typeset mathemat-
ics produced from the LaTeX (Fig. 5).

Of our examples, 12 are from ACM SIGGRAPH papers on im-
age processing, geometric modeling, and animation [Blanz and Vet-
ter 1999; Kim et al. 2019; Kondapaneni et al. 2019; Le and Lewis
2019; Liu et al. 2019a; McMillan and Bishop 1995; Rusinkiewicz
2019; Smith et al. 2019; Wang et al. 2019; Wronski et al. 2019], 7
are from a book on optimization [Boyd et al. 2004], 4 are from a
geometry processing book [Botsch et al. 2010], and 3 are from a
geometry processing course [Jacobson 2020].

These examples show that I❤LA’s syntax is able to represent all
of the operations with virtually identical symbols and only slightly
degraded layout. A proportional fontwould decrease this gap, given
the original LaTeX-produced math uses proportional fonts, though
it would result inmatrices with elements that are not aligned across
different rows. Matrices in I❤LA lead to an undesirable vertical
shift in the line of the expression, as can be seen for example in
Fig. 4(o). I❤LA does support semicolons in place of line breaks, but
this destroys the 2D visual layout of an individual matrix. We con-
sidered parsing matrices as 2D “ASCII art,” but decided against this
as the proper 2D layout of the rest of the line becomes ambiguous

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

https://docs.python.org/3/reference/grammar.html

I❤LA: Compilable Markdown for Linear Algebra • 264:7

L_i,j = { w_i,j if (i,j) E
 0 otherwise
L_i,i = - _(for i) L_i,

where
L ^(n n)
w ^(n n): edge weight matrix
E { } index: edges

(a) Geometry Processing Course: Parameterization
[Jacobson 2020]

from trigonometry: sin, cos
`x(θ, ϕ)` = [Rcos(θ)cos(ϕ)

Rsin(θ)cos(ϕ)
Rsin(ϕ)]

where

ϕ ∈ ℝ : angle between 0 and 2π
θ ∈ ℝ : angle between -π/2 and π/2
R ∈ ℝ : the radius of the sphere

(b) Polygon Mesh Processing
[Botsch et al. 2010] page 32

given
f ∈ ℝ^(n)
p ∈ ℝ^(n)

∑_i f_i²p_i - (∑_i f_i p_i)²

(c) Convex Optimization
[Boyd et al. 2004] page 154

given
a_i ^n : the measurement vectors
x ^n : original vector
w_i : measurement noise

y_i = a_i x + w_i
x = (_i a_i a_i) _i y_i a_i

(d) Convex Optimization
[Boyd et al. 2004] page 384

given
A ∈ ℝ^(k×k)
B ∈ ℝ^(k×m)
C ∈ ℝ^(m×m)

S = C - BᵀA⁻¹B
[A⁻¹+A⁻¹BS⁻¹BᵀA⁻¹ -A⁻¹BS⁻¹

-S⁻¹BᵀA⁻¹ S⁻¹]

(e) Convex Optimization
[Boyd et al. 2004] page 650

E = 1/` _N` `E_I` + _j _j /` _S`_j + _j _j /` _T`_j + _j (_j- _j) /` _ `_j

where

` _N`
`E_I`
_i
_i

` _S`_i
` _T`_i
_j
_j

` _ `_j

(f) A Morphable Model for the Synthesis of 3D Faces [Blanz and Vetter 1999] Eq. 5

`∂²I₅/∂f²` = 2[A₁,₁I₃ A₁,₂I₃ A₁,₃I₃
A₂,₁I₃ A₂,₂I₃ A₂,₃I₃
A₃,₁I₃ A₃,₂I₃ A₃,₃I₃]

where

A ∈ ℝ^(3×3)

(g) Anisotropic Elasticity for
Inversion-Safety and Element

Rehabilitation [Kim et al. 2019] Eq. 7

`T₁` = 1/√2 U[0 0 0
0 0 -1
0 1 0]Vᵀ

where

U ∈ ℝ^(3×3)
V ∈ ℝ^(3×3)

(h) Analytic Eigensystems for
Isotropic Distortion Energies
[Smith et al. 2019] Eq. 13

v_i = ∑_j w_i,j M_j u_i

where

w ∈ ℝ^(n×m)
M_j ∈ ℝ^(4×4)
u_i ∈ ℝ^4

(i) Direct Delta Mush
Skinning and Variants

[Le and Lewis 2019] Eq. 1

min_(C ∈ ℝ^3) ∑_i ‖x_i + (R_i - I₃)C‖²

where

x_i ∈ ℝ^3
R_i ∈ ℝ^(3×3)

(j) Hand Modeling and Simulation Using
Stabilized Magnetic Resonance Imaging

[Wang et al. 2019] Eq. 3

given
α_T : ℝ
n_T : ℝ³

`n(v)` = (∑_(T for T ∈ `N₁`_v) α_T n_T)/‖ ∑_(T for T ∈ `N₁`_v) α_T n_T ‖

where
v ∈ ℤ
`N₁`_i ∈ {ℤ}

(k) Polygon Mesh Processing
[Botsch et al. 2010] page 42

`H(p)` = 1/(2π)∫_[0, 2π] `kₙ`(φ, p) ∂φ

where

p ∈ ℝ^3 : point on the surface
`kₙ`: ℝ,ℝ^3 → ℝ : normal curvature

(l) Geometry Processing Course: Curvature
[Jacobson 2020]

Ω = [`e₁` `e₂`][`k₁` 0
0 `k₂`] [`e₁`ᵀ

`e₂`ᵀ]

where
`k₁` ∈ ℝ
`k₂` ∈ ℝ
`e₁` ∈ ℝ²
`e₂` ∈ ℝ²

(m) Handheld Multi-Frame Super-Resolution
[Wronski et al. 2019] Eq. 4

`L(x,ν)` = xᵀWx + ∑_i ν_i(x_i²-1)

where

x ∈ ℝ^n
W ∈ ℝ^(n×n)
ν ∈ ℝ^n

(n) Convex Optimization
[Boyd et al. 2004] page 220

[`P ` 0
 0 `P `][L 0
 `P ` C`P ` U -L][U L `P ` B
 0][`P ` 0
 0 I_n]

where

`P ` ^(m m)
`P ` ^(m m)
`P ` ^(n n)
 B ^(m n)
 C ^(n m)
 L ^(m m)
 L ^(n n)
 U ^(m m)
 ^(n n)

(o) Convex Optimization
[Boyd et al. 2004] page 680

from trigonometry: tan, cos

t = t/cos()
ã = a tan()
_i cos ()((p_i - q_i) n_i +((p_i+q_i) n_i) ã+n_i t)

where
a : axis of rotation
 : angle of rotation

p_i
q_i
n_i
t

(p) A Symmetric Objective Function for ICP
[Rusinkiewicz 2019] Eq. 9

`G_σ(s^k_i)` = ∑_j l_j exp(-dist(`bᵢ`, b_j)²/(2σ²)) `s^k`_j

where
l_j ∈ ℝ : the length of bj
dist: ℝ², ℝ² → ℝ : measures the geodesic distance
`bᵢ` ∈ ℝ²
b_j ∈ ℝ²
σ ∈ ℝ
`s^k`_j ∈ ℝ² : direction vector

(q) Atlas Refinement with Bounded Packing Efficiency
[Liu et al. 2019a] Eq. 3

∑_i α_i + 1/M ∑_i ∑_j (f(X_i,j)/`p_c`(X_i,j) - (∑_k α_k p_k(X_i,j))/`p_c`(X_i,j))

where

α ∈ ℝ^N
p_j ∈ ℝ → ℝ
X_i ∈ ℝ^(n_i)
M ∈ ℝ
f: ℝ → ℝ
`p_c`: ℝ → ℝ

(r) Optimal Multiple Importance Sampling
[Kondapaneni et al. 2019] Eq. 16

`xᵢ` = T_*,1
`xⱼ` = T_*,2
`xₖ` = T_*,3
`n(T)` = (`xⱼ`-`xᵢ`)×(`xₖ`-`xᵢ`)/‖(`xⱼ`-`xᵢ`)×(`xₖ`-`xᵢ`)‖

where

T ∈ ℝ^(3×3)

(s) Polygon Mesh Processing
[Botsch et al. 2010] page 41

`C(x,y)` = (_n _i c_n,i w_n,i R_n) / (_n _i w_n,i R_n)

where

c ^(f s) : the value of the Bayer pixel
w ^(f s) : the local sample weight
R ^f : the local robustness

(t) Handheld Multi-Frame Super-Resolution
[Wronski et al. 2019] Eq. 1

from linearalgebra: tr

`J₃` = 1₃,₃
`κ_angle(Dₘ)` = 3(√2 v)^(2/3)(7/4‖`Dₘ`‖_F^2-1/4tr(`J₃``Dₘ`ᵀ`Dₘ`))⁻¹

where

`Dₘ` ∈ ℝ^(3×3)
v ∈ ℝ

(u) Anisotropic Elasticity for Inversion-Safety and Element
Rehabilitation [Kim et al. 2019] Eq. 47

`E_LSCM` = ∑_T A_T‖M_T v_T - [0 -1
1 0] M_T u_T‖²

where

v_T ∈ ℝ^3
u_T ∈ ℝ^3
M_T ∈ ℝ^(2×3)
A_T ∈ ℝ

(v) Polygon Mesh Processing
[Botsch et al. 2010] page 74

r = v
s =
n = v

`k ` = r (`C `-V)
`k ` = s (`C `-V)
`k ` = n (`C `-V)

`x(,v)` = (r `D_A`(, v)+`k ` (, v))/(n `D_A`(, v)+`k ` (, v))
`y(,v)` = (s `D_A`(, v)+`k ` (, v))/(n `D_A`(, v)+`k ` (, v))

where

v ^3
 ^3
 ^3
V ^3
`C ` ^3

v
`D_A`: , ^3
: ,

(w) Plenoptic Modeling: An Image-Based Rendering System [McMillan and Bishop 1995] Eq. 22

given
A_i ∈ ℝ^(m_i × n)
b_i ∈ ℝ^m_i
`x₀` ∈ ℝ^n

min_(x ∈ ℝ^n) ∑_i ‖A_i x + b_i‖ + (1/2)‖x-`x₀`‖²

(x) Convex Optimization [Boyd et al. 2004] page 276

`I(X;Y)` = ∑_i ∑_j x_j p_i,j log₂(p_i,j/∑_k x_k p_i,k)

where

x ∈ ℝ^n
p ∈ ℝ^(m×n)

(y) Convex Optimization [Boyd et al. 2004] page 208

min_(u) u (_i [x_i n_i
 n_i][(x_i n_i) n_i])u - 2u (_i [x_i n_i
 n_i]n_i (p_i-x_i)) + _i(p_i-x_i) n_i n_i (p_i-x_i)

where

x_i
n_i
p_i

(z) Geometry Processing Course: Registration [Jacobson 2020]

Fig. 4. Formulas from various papers, books, and courses in computer graphics and their translation into I❤LA.

(e.g., should the rest of the formula continue to the right of the top
or bottom row of a 2×2matrix?) and it imposes a burden on the au-
thor to maintain a sensible 2D layout, since text must be edited on
multiple rows consistently. For a similar reason, we did not explore
2D arrangements of fractions, either.

These examples demonstrate certain limitations of I❤LA as a re-
placement for these equations in their original context. First, some
equations define functions themselves, as in 𝐸 (𝑥) = 𝑥⊤𝑃𝑥 + 𝑞⊤𝑥 .
I❤LA code itself defines a function, so the “𝐸 (𝑥) =” is redundant. To
preserve the equation as written, we define a variable named “𝐸 (𝑥)”

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

264:8 • Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold

...

...

Fig. 5. The supplemental materials contain a page for each example in our
evaluation.

as in `E(x)` = xᵀPx + qᵀx . We plan to explore local function def-
initions in the future, which would naturally provide support for
this syntax as well as closures over precomputed values. More gen-
erally, some equations include more than one equals sign, such as
∇𝑓 = 2𝐼3 ⊗ 𝐴 = 2𝐻 . Some equations mix definitions and deriva-
tions and thus don’t follow I❤LA’s new-symbol-on-the-left-hand
side convention. I❤LA has no facility for such equations, though
support could be added to I❤LA through new syntax that allows
for commentary (e.g., derivations) on the same lines as definitions.
I❤LA could also be expanded in the future with a computer alge-
bra system to discover that, e.g., the unknown variable 𝐻 is de-
fined by the expression 𝐼3 ⊗ 𝐴. This would add compile-time, but
not run-time, complexity. I❤LA can only take linear algebra data
types (matrices, vectors, sequences, sets, and functions) as input,
rather than arbitrary or dynamic data structures.This requires us to
choose a particular encoding for triangles or sliding windows (Fig-
ure 4 (k) and (t), respectively). In Figure 4 (u), I❤LA’s LaTeX output
does not typeset the 𝜅angle subscript, because I❤LA escapes vari-
able names in the LaTeX output. I❤LA can’t assume that variable
names are valid LaTeX. In this example, the variable name would
have to be `κ_\text {angle}(D_m)` to obtain the desired typeset
LaTeX, rather than `κ_angle(Dₘ)` .

6.2 Integrating with Existing Code
To simulate real-world I❤LA usage, we collected a set of existing
codebases (paper implementations and libraries) and replaced func-
tions within them with I❤LA implementations (Fig. 6). Note that
not all code was associated with a formula in a paper written in
mathematical notation; some formulas are just described in prose.
Nevertheless, having an I❤LA expression for the code allows it to
be instantiated in multiple programming environments and com-
municated clearly as LaTeX-formatted conventional math to other
readers.We verified that replacing existing codewith I❤LA-generated
code produced identical output for each codebase. The case studies

are summarized in Table 2. Please see the supplemental materials
for the original andmodified source code and the I❤LA source code
(Fig. 5).

Case Study 1: Robust Inside-Outside Segmentation using General-
izedWinding Numbers. This codebase is the original authors’ imple-
mentation of a paper computing the inside-outside segmentations
of shapes [Jacobson et al. 2013], and is implemented using C++ in-
side the libigl package [Jacobson et al. 2018]. We replaced the solid
angle computation with I❤LA. The purpose of this function is diffi-
cult to discern based on the C++ code yet is easy to read in its I❤LA
form (Fig. 7c). We show our output in Fig. 6.

Case Study 2: Regularized Kelvinlets. This codebase implements
“sculpting brushes based on fundamental solutions of elasticity”
[De Goes and James 2017] in C++, also as part of libigl. We can ex-
press the formula for the pinching operation ([De Goes and James
2017] Equation 17) as a single line of I❤LA similar to the way it is
expressed in the paper (Fig. 7b). I❤LA’s LaTeX output looks almost
identical to the paper’s formula, unlike the relatively difficult-to-
read C++ code.

Case Study 3: Instant Field-Aligned Meshes. This codebase is the
original authors’ implementation of a remeshing algorithm [Jakob
et al. 2015] in C++. We replace the “intermediate position” formula,
which is the closed-form solution of a constrained least-squares
problem. Again, 7 lines of hard-to-read C++ become 3–4 lines of
I❤LA,which look very similar to the expression in the paper (Fig. 7a).
We show their GUI running with I❤LA-generated code in Fig. 6.

Case Study 4: Frame Fields. We modify the original authors’ im-
plementation of a paper generating frame fields [Panozzo et al.
2014] using C++ in libigl. We replaced a canonical-to-frame trans-
formation function with I❤LA. The function builds three matrices,
of which the third is a block matrix involving the first two. This ex-
ample highlights I❤LA’s block matrix abilities.Though the formula
involves statically-sized matrices, the developers use Eigen’s flexi-
ble 𝑛-dimensional matrix type everywhere, whereas I❤LA’s gen-
erated C++ code fills in Eigen’s matrix dimension parameters pre-
cisely. This is typically tedious to do by hand. We show our code
running Example 506 in the libigl tutorial in Fig. 6.

Case Study 5: Collision-Aware and Online Compression of Rigid
Body Simulations via Integrated Error Minimization. This codebase
is the authors’ implementation of an animation-compression paper
([Jeruzalski et al. 2018]) in C++. We replaced a function computing
the inverse of a block matrix (Equation 4 in the paper).

Case Study 6: Properties of Laplace Operators for TetrahedralMeshes.
This codebase is the original authors’ C++ implementation of their
paper on properties of volumetric Laplacians [Alexa et al. 2020].We
replaced two functions with I❤LA: the first function computes the
volume of a tetrahedron, and the second calculates the circumcen-
ter of a triangle. These functions are not complex. However, writ-
ing them in I❤LA produced a drop-in replacement for the existing
function prototypes—and can also produce correct code in other
languages.

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

I❤LA: Compilable Markdown for Linear Algebra • 264:9

Table 2. Summary of case studies. Among other benefits, I❤LA requires fewer lines of code (LoC) than the code it replaces.

Case Source Language LoC (original) LoC (I❤LA) Workarounds required
1 Jacobson et al. [2013] C++ 31 8 No
2 De Goes and James [2017] C++ 6 1 No
3 Jakob et al. [2015] C++ 7 4 No
4 Panozzo et al. [2014] C++ 14 5 No
5 Jeruzalski et al. [2018] C++ 5 2 No
6 Alexa et al. [2020] C++ 12 6 No
7 Sieger and Botsch [2020] C++ 26 9 Yes
8 Alexa [2020] C++ 21 8 Yes
9 Preiner et al. [2019] Python 15 9 Yes

Fig. 6. We replaced code in existing code bases with code generated by our I❤LA compiler and verified that the output is identical. Here we show graphical
examples. From left to right: Gaussian product subdivision surfaces [Preiner et al. 2019]; instant field-aligned meshes [Jakob et al. 2015]; Polygon Mesh
Processing Library adaptive remeshing [Sieger and Botsch 2020]; winding number surface reconstruction [Jacobson et al. 2013]; frame fields [Panozzo et al.
2014].

Case Study 7: PolygonMesh Processing Library. ThePolygonMesh
Processing Library [Sieger and Botsch 2020] is written in C++. We
replaced 26 lines of code implementing the Hessian and Jacobian
matrices for an adaptive remeshing routine with I❤LA. The origi-
nal C++ used some modular indexing arithmetic that I❤LA doesn’t
yet support, so we needed to create a copy of the matrix of indices
with the arithmetic operations already applied. Fig. 6 shows the
I❤LA-generated code running inside the library’s GUI.

Case Study 8: ConformingWeighted Delaunay Triangulations. This
codebase is the author’s C++ implementation of their paper on De-
launay triangulation [Alexa 2020]. The author’s code implements
Equation 33 and part of Equation 34 in the paper, both of which we
replaced with much shorter versions written in I❤LA. In order to
interface with the existing code, we needed to add 3–4 lines of C++
code to pack the coordinates representing triangles into a matrix.
In this example, a single I❤LA function returns 6 values consumed
by the C++ code.

Case Study 9: Gaussian-Product Subdivision Surfaces. This code-
base is the authors’ Python implementation of their subdivision
surface scheme [Preiner et al. 2019]. We replaced the code inside
its key function with I❤LA. The function does not correspond to
any formula in the paper, but is implemented in terms of linear
algebra operations using NumPy. This core function makes use of
an external library function with multiple return values, but I❤LA
does not currently support calling external functions with multiple

return values. To work around this, we copy-and-pasted the gener-
ated I❤LA code around the callback function.The callback function
also changes the dimensions of an existing matrix, so we manually
added a line of code to update I❤LA’s dimension variable to match.
The subdivided mesh can be seen in Fig. 6.

6.2.1 Observations. Overall, the I❤LA code is shorter and more
closelymatches the paper formula than the existing code it replaced.
Importantly, it can also be compiled to multiple output languages.

Many codebases contain small formulas, e.g.,
A = K.transpose() * (Minv * (-L * (Minv * K))) [Jacobson et al. 2018],
that could be expressed in conventional mathematical notation us-
ing I❤LA, e.g., A = KᵀM⁻¹(-L)M⁻¹K . This suggests an embeddable
or macro implementation of I❤LA would be beneficial. In a stat-
ically typed language, inline I❤LA could infer type declarations,
eliminating the need to provide them in I❤LA.

I❤LA cannot replace the majority of code in a codebase. Formu-
las are ultimately a small part of an entire codebase, which includes
file loading, documentation, GUIs, algorithms with complex con-
trol flow, and manipulation of complex data structures like meshes.
This other code can often be re-used between projects, whereas the
formulas in a new research paper must be accurately implemented
anew in order to reproduce the work.

6.3 A Statistical Estimate of Applicability
To estimate the applicability of I❤LA to computer graphics in gen-
eral, we randomly sampled 100 of the numbered equations from
our corpus of all 1987 numbered equations appearing in the ACM

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

264:10 • Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold

ε = 10^(-4)
`λᵢ` = (2⟨`nᵢ`+⟨`nᵢ`,`nⱼ`⟩`nⱼ`, `vⱼ`-`vᵢ`⟩)/(1-⟨`nᵢ`, `nⱼ`⟩²+ε)
`λⱼ` = (2⟨`nⱼ`+⟨`nⱼ`,`nᵢ`⟩`nᵢ`, `vᵢ`-`vⱼ`⟩)/(1-⟨`nⱼ`, `nᵢ`⟩²+ε)
`qᵢⱼ` = 1/2(`vᵢ`+`vⱼ`)-1/4(`λᵢ``nᵢ`+`λⱼ``nⱼ`)

where

`vᵢ` ∈ ℝ^3
`nᵢ` ∈ ℝ^3
`vⱼ` ∈ ℝ^3
`nⱼ` ∈ ℝ^3

inline Vector3f middle_point(const Vector3f &p0, const Vector3f &n0, const Vector3f
&p1, const Vector3f &n1) {↩→
Float n0p0 = n0.dot(p0), n0p1 = n0.dot(p1),

n1p0 = n1.dot(p0), n1p1 = n1.dot(p1),
n0n1 = n0.dot(n1),
denom = 1.0f / (1.0f - n0n1*n0n1 + 1e-4f),
lambda_0 = 2.0f*(n0p1 - n0p0 - n0n1*(n1p0 - n1p1))*denom,
lambda_1 = 2.0f*(n1p0 - n1p1 - n0n1*(n0p1 - n0p0))*denom;

return 0.5f * (p0 + p1) - 0.25f * (n0 * lambda_0 + n1 * lambda_1);
}

(a) Instant Field-Aligned Meshes [Jakob et al. 2015]

`p_ε(r)` = (2b-a)/`r_ε`³ Fr - 3/(2`r_ε`⁵)(2b(rᵀFr)I_n+aε²F)r

where

F ∈ ℝ^(n×n)
r ∈ ℝ^n
`r_ε` ∈ ℝ
a ∈ ℝ
b ∈ ℝ
ε ∈ ℝ

// Regularized Kelvinlets: Formula (17)
kelvinlet = [&r, &F, &r_norm_sq, &kp](const Scalar& epsilon) {

const auto r_epsilon = sqrt(r_norm_sq + kp.epsilon * kp.epsilon);
const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
auto t1 = ((2 * b - a) / r_epsilon_3) * F * r;
auto t2_coeff = 3 / (2 * r_epsilon * r_epsilon * r_epsilon_3);
auto t2 = t2_coeff * (2 * b * (r.transpose().dot(F * r)) * r +

a * epsilon * epsilon * epsilon * F * r);
return t1 - t2;

};

(b) Regularized Kelvinlets [De Goes and James 2017]

from trigonometry: atan2

 = `v ` - p
 = `v ` - p
 = `v ` - p
a =
b =
c =

atan2(|[]|, (abc+()c+()a+()b))/(2)

where

`v ` ^3
`v ` ^3
`v ` ^3
p ^3

template <
typename DerivedA,
typename DerivedB,
typename DerivedC,
typename DerivedP>

IGL_INLINE typename DerivedA::Scalar
igl::solid_angle(↩→

const Eigen::MatrixBase<DerivedA> & A,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<DerivedC> & C,
const Eigen::MatrixBase<DerivedP> & P)

{
typedef typename DerivedA::Scalar SType;
// Gather vectors to corners
Eigen::Matrix<SType,3,3> v;
// Don't use this since it will freak out for

templates with != 3 size↩→
//v<< (A-P),(B-P),(C-P);
for(int d = 0;d<3;d++)
{

v(0,d) = A(d)-P(d);
v(1,d) = B(d)-P(d);
v(2,d) = C(d)-P(d);

}
Eigen::Matrix<SType,1,3> vl = v.rowwise().norm();
//printf("\n");
// Compute determinant
SType detf =

v(0,0)*v(1,1)*v(2,2)+
v(1,0)*v(2,1)*v(0,2)+
v(2,0)*v(0,1)*v(1,2)-
v(2,0)*v(1,1)*v(0,2)-
v(1,0)*v(0,1)*v(2,2)-
v(0,0)*v(2,1)*v(1,2);

// Compute pairwise dotproducts
Eigen::Matrix<SType,1,3> dp;
dp(0) = v(1,0)*v(2,0);
dp(0) += v(1,1)*v(2,1);
dp(0) += v(1,2)*v(2,2);
dp(1) = v(2,0)*v(0,0);
dp(1) += v(2,1)*v(0,1);
dp(1) += v(2,2)*v(0,2);
dp(2) = v(0,0)*v(1,0);
dp(2) += v(0,1)*v(1,1);
dp(2) += v(0,2)*v(1,2);
// Compute winding number
// Only divide by TWO_PI instead of 4*pi because

there was a 2 out front↩→
return atan2(detf,

vl(0)*vl(1)*vl(2) +
dp(0)*vl(0) +
dp(1)*vl(1) +
dp(2)*vl(2)) / (2.*igl::PI);

}

(c) Winding Number [Jacobson et al. 2013]

Fig. 7. Side-by-side comparisons of paper formula, the I❤LA implementation, and the original C++ implementation from three existing codebases (a,b,c).

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

I❤LA: Compilable Markdown for Linear Algebra • 264:11

SIGGRAPH 2019 proceedings. Among the 100 equations, we deter-
mined 15 to be derivations. Of the 85 remaining equations (formu-
las), we estimate that 53 (62%) are directly implementable using
I❤LA while the remaining 32 are not (38%). Of the remaining 32,
11 rely on partial derivatives and gradients and unsupported inte-
gration, 10 express complex optimization problems, 7 use unsup-
ported control flow, and 4 use unsupported operators. Some of the
11 equations using partial derivatives and gradients could be imple-
mented in I❤LA by passing the partial derivatives and gradients as
additional parameters. If so, this would allow I❤LA to implement
64
85 = 75% of the formulas. Examples can be seen in Figure 8

7 USER STUDY
We conducted a user study to understand whether I❤LA can be
learned and how it is perceived by experienced practitioners. We
designed our experiment following the guidance of Ko et al. [2015].
We recruited 8 computer science PhD students from two univer-
sities based on their having at least six months experience imple-
menting linear algebra formulas. 75% of participants reported at
least one year of experience. Participants were familiar with a va-
riety of numerical linear algebra programming environments. All
participants reported spending over 1 hour a week programming
(50% reported over 10 hours per week). In our experiment, partici-
pants implemented three progressivelymore difficult linear algebra
formulas (Figure 9) in both I❤LA and their preferred programming
environment (four usedC++/Eigen and four used Python/NumPy/SciPy).
Participants were given a test harness and skeleton code to use
in their preferred programming environment. For I❤LA, partici-
pants used the browser-based editor and compiler. We counterbal-
anced experimental conditions so that half of the participants im-
plemented all three formula using I❤LA first and half using their
preferred environment first. Afterwards, participants filled out a
post-study questionnaire. Participants received a $50 gift card as
renumeration. Our protocol was approved by an institutional re-
view board.

The study was conducted remotely in a one-on-one manner be-
tween an author and a participant. To learn I❤LA, participants
were directed to the I❤LA language reference. Because I❤LA is a
new language with few available resources, participants were also
told to treat the author as an interactive language reference. Par-
ticipants were told to spent at most 10 minutes for each implemen-
tation, though we allowed participants to use more time if desired.
All participants chose to work until successful completion, which
took no more than 21 minutes for each task. The experiment lasted
between one and two hours for each participant.

Raw data and survey responses can be found in the supplemental
materials. We asked three questions to assess participants’ percep-
tions about I❤LA on a 5-point Likert scale ranging from 1 (strongly
disagree) to 5 (strongly agree). This data is shown in Figure 10. We
computed 𝑝-values using a one-sample non-parametric permuta-
tion test [Raschka 2018] against the ‘neutral’ theoretical median re-
sponse and then corrected them using a post-hoc Holm-Bonferroni
familywise error correction [Seabold and Perktold 2010]. All three
questions achieved statistical significance (𝑝 < 0.01). Our exper-
iment found that participants found I❤LA easy to learn and that

U
ns

up
po

rt
ed

O

pe
ra

to
rs

D
er

iv
at

io
ns

U
ns

up
po

rt
ed

 O
pt

im
iz

at
io

n

[Preiner et al. 2019]

[Verschoor and Jalba 2019]

[Glauser et al. 2019]

[Bonneel and Coeurjolly 2019]

[Liu et al. 2019b]

[Miandji et al. 2019]

[Bessmeltsev and
Solomon 2019]

[Zhang et al. 2019]

[Huang et al. 2019]

[Sharp et al. 2019b]

[Lindell et al. 2019]

[Lombardi et al. 2019]

[Kim et al. 2019]

M
ul

ti
pl

e
C

on
di

ti
on

s
O

th
er

D
er

iv
at

iv
es

Fig. 8. Example equations that can’t be directly implemented in I❤LA. The
derivative expressions could be implemented by passing the derivatives as
parameters.

I❤LA looks similar to conventional math. Most intriguingly, par-
ticipants preferred I❤LA to the other language they spent months
and years using.

We also compared the time it took participants to implement the
formulas using I❤LA and participants’ other language (Table 3).
When implementing the simple formulas—also when participants’
first encountered and learned to use I❤LA—they completed the task

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

264:12 • Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold

Complex
Create an edge-weighted adjacency matrix. Given a set of edges for a graph of vertices , create
the matrix:

Medium
Multiply a 3D vertex position by a weighted average of transformation matrices . The
corresponding weights are . Assume the vertex position is already in homogeneous coordinates,
which is to say is a -vector.

Simple
Given an matrix , an -vector , and a constant , compute the quadratic form for an -vector :

Fig. 9. The simple, medium, and complex tasks in our user study. The com-
plex task required participants to create a sparse matrix.

Table 3. The average time in minutes participants needed to complete each
programming task using I❤LA and their other programming environment
(C++/Eigen or Python/NumPy/SciPy). Averages are rounded to the nearest
minute. Statistical significance (𝑝-values) have been adjusted with a fami-
lywise error correction; significant values are shown in bold.

simple medium complex
I❤LA (minutes) 10 9 12
Other (minutes) 4 6 12
Significance (𝑝) 0.005 0.065 0.862

faster using the other language they are experienced in. This dif-
ference decreased for the later tasks. Using a paired t-test and a
post-hocHolm-Bonferroni familywise error correction, only the av-
eraged timings for the simple formula was statistically significant.
We find these times extremely encouraging. Over the course of our
short experiment, participants were able to learn I❤LA and com-
plete tasks as efficiently as in their experienced language.

One participant commented, “I liked that it felt like a combina-
tion of markdown and latex. It’s so nice to type so few lines com-
pared to my c++ implementation. There is so much time and space
used declaring the correct variables, initializing matrices to zero,
figuring out how to index things, unnecessary loops. I like how
short the I❤LA code was. I feel it allows to think about the math
directly and skip implementation part and finding/fixing bugs too.
Usually those bugs in c++ are annoying and a distraction from the
theory.” Another participant stated, “I heart LA is easier to imple-
ment comparing to Python even for I heart LA beginners. I feel like
I don’t even need to ‘program’ the I heart LA to get the formula
function that I want for other programming languages.” Regarding
our choice of using Unicode symbols, one participant remarked, “I
was initially worried that I would have to learn how to enter those
characters from my keyboard, but the ASCII commands that con-
vert to unicode in the web editor were very useful, so I think this
is basically a non-issue with proper editor support.”

We conclude from our user study that users can accomplish a
range of tasks in I❤LA within 15 minutes and that users perceive
that I❤LA looks similar to conventional math.

8 CONCLUSION
I❤LA has the potential to greatly benefit the scientific ecosystem,
from researchers and practitioners to students and teachers. I❤LA
makes it easier to try new ideas, since it automates the tedious and
error-prone step of translating a mathematical idea into compil-
able code. I❤LA makes it easier to publish ideas correctly, since
the published formula can be—or will have been—compiled and
tested. I❤LA makes it easier to reproduce ideas, since mathemat-
ical notation changes relatively infrequently while programming
environments change frequently. I❤LA may reduce the translation
loss that occurs when communicating via publications: A graduate
student describes their implementation to a co-author whowrites it
in LaTeX, introducing an error; then, someone else reads the paper
and implements it incorrectly.

As Bonneel et al. [2020] found, often code released with papers
can be difficult to compile and run in an environment different from
the authors. Static environments are elusive. Operating systems,
compilers, and support libraries are constantly being updated and
sometimes break compatibility. Even when the code compiles and
executes, someone may wish to make use of only a small portion
of the authors’ code. This can be difficult to extract due to poor or
mismatched encapsulation. Submitting papers with verified I❤LA
guarantees a baseline level of reproducibility.

The existence of I❤LA raises interesting pedagogical questions.
Consider, for example, a lecture-based course where materials are
delivered via conventional math on the chalkboard, and then stu-
dents demonstrate their learning by implementing this math in C++
code. How much of the students’ learning activity is an exercise in
translation? If the target language is changed to I❤LA and trans-
lating conventional math to code becomes trivial, then how should
such lecture-and-assignment-based courses adapt?

Unicode symbols are very beneficial to the readability of I❤LA.
Conventionalmathematical symbols are a core part of conventional
math. Via Unicode, I❤LA strongly resembles conventional math
(evenwithout compiling and rendering LaTeX). Unicode is no harder
to type than LaTeX symbol names or the long operator names in
conventional programming languages. We started I❤LA with the
conceit that variable names would be single letters. Although we
relaxed this limitation, I❤LA—just like conventional math—is most
readable when using single-letter identifiers.

Limitations and Future Work. I❤LA is deliberately limited in
scope. We do not wish for I❤LA to become a general purpose pro-
gramming language, but rather to complement existing program-
ming ecosystems and improve access to correctness. We do not
wish for I❤LA to produce code that runs at state-of-the-art effi-
ciency, but it could facilitate adoption of new high-performance
linear algebra packages with the addition of new code generators.
We plan to add more target languages and facilitate others’ to add
their own code generators. We also plan to expand I❤LA’s syntax
with useful, unambiguous conventions as needs arise.

Mathematical notation is vast and redundant [Tao 2020]. Our
scope is limited to linear algebra as expressed in computer graph-
ics. While our examples (Section 6.1) also draw from a book on
optimization [Boyd et al. 2004] and we know from experience that
the linear algebra notation used in computer graphics is compatible

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

I❤LA: Compilable Markdown for Linear Algebra • 264:13

0% 20% 40% 60% 80% 100%

strongly disagree disagree neutral agree strongly agree

Q1: It was easy to learn to use I❤LA.
Q2: I prefer I❤LA to the other programming language I used.
Q3: I❤LA looks like linear algebra formula I see in papers or
 on a chalkboard.

p=0.004

p=0.004

p<0.001

Fig. 10. Qualitative data from our user study.

with the notation found elsewhere, we did not conduct systematic
analyses on equations from other domains. We expect that I❤LA
will be applicable to adjacent fields like computer vision, machine
learning, robotics, and optimization. Case studies will likely reveal
additional notation to support, such as probabilistic expressions. It
is worth considering other flavors of mathematical notation in the
future, as an extension of I❤LA or as a similarly-inspired indepen-
dent language. For example, Einstein notation is popular in some
domains, but virtually no SIGGRAPH papers use it (none in 2019).

We don’t yet support creating local functions, calling functions
withmultiple return values like singular value or Eigen-decomposition,
arithmetic in subscripts, such as a_(2i) , complex numbers and
quaternions, or tensors. We started with the most common nota-
tion based on our quantitative analysis of SIGGRAPH equations.
Subscript arithmetic is present in 5.7% (113/1987) of the equations;
complex numbers and quaternions in 2.1% (41/1987); multiple re-
turns values in 0.5% (10/1987); and Eigen and singular value decom-
positions in 0.4% (8/1987). Local functions are rarely relevant at the
level of individual equations.

We plan to explore control flow in future extensions to I❤LA.
Pseudocode in papers sometimes contains mistakes; pseudocode is
an ad hoc invented language that cannot be compiled and tested.
Even for papers that include original codebases, pseudocode pro-
vides a clear recipe for implementing the key ideas independent of
any one programming language.

I❤LA’s intermediate representation (IR) is math. It could be use-
ful for symbolic manipulations like derivatives and distributed com-
putation. Separating the IR into a standalone artifact could allow for
re-usability benefits as in the successful LLVM project [Lattner and
Adve 2004]. The IR could be compiled to various high-performance
outputs. Other languages could target the IR and gain access to
the compilers. It would be extremely beneficial to solve the inverse
problem of converting existing codebases to I❤LA by first lifting
into the IR as in [Ahmad et al. 2019]. The I❤LA code could be used
as a more readable version of the function and as a means to con-
vert the code into a new language. Along these lines, we plan to
write code generators for additional programming languages and
mathematical modeling environments. It would also be interesting
to consider the problem of converting hand-written math to I❤LA.

More broadly, we are interested in extending I❤LA into a literate
environment so that prose and formula can be interwoven. This
could take the form of a new type of cell for Jupyter notebooks
that both displays a typeset formula (via LaTeX output) and can be
executed (like cells containing code). This could also take the form
of an environment for writing executable academic papers.

Finally, we are interested in additional user studies.The study we
performed shows that researchers can become proficient in I❤LA
quite quickly. A longitudinal study could investigate whether re-
searchers who use I❤LA are able to test more ideas.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their suggestions,
Towaki Takikawa for helpful feedback, and Thomas LaToza for a
discussion on evaluating programming languages. Alec Jacobson
was supported in part by the Canada Research Chairs Program
Yotam Gingold was supported in part by the United States National
Science Foundation (IIS-1453018) and a gift from Adobe Systems
Inc.

REFERENCES
Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil.

2019. Automatically Translating Image Processing Libraries to Halide. ACM Trans.
Graph. 38, 6 (Nov. 2019).

Marc Alexa. 2020. Conforming weighted delaunay triangulations. ACM Transactions
on Graphics (TOG) 39, 6 (2020), 1–16.

Marc Alexa, Philipp Herholz, Maximilian Kohlbrenner, and Olga Sorkine-Hornung.
2020. Properties of Laplace Operators for Tetrahedral Meshes. Computer Graphics
Forum (proceedings of SGP 2020) 39, 5 (2020).

Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Suky-
oung Ryu, Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund, and
others. 2005. The Fortress language specification. SunMicrosystems 139, 140 (2005).

Juancarlo Añez. 2019. TatSu. https://tatsu.readthedocs.io/
Sai Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan

Ragan-Kelley. 2021. Systematically Differentiating Parametric Discontinuities.
ACM Trans. Graph. 40, 107 (2021), 107:1–107:17.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for Physical Simulation
on CPUs and GPUs. ACM Transactions on Graphics 35, 2 (May 2016), 21:1–21:12.

Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of line drawings via
polyvector fields. ACM Transactions on Graphics (TOG) 38, 1 (2019), 1–12.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A fresh
approach to numerical computing. SIAM review 59, 1 (2017), 65–98.

Volker Blanz andThomas Vetter. 1999. Amorphablemodel for the synthesis of 3D faces.
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. 187–194.

Nicolas Bonneel and David Coeurjolly. 2019. Spot: sliced partial optimal transport.
ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.

Nicolas Bonneel, David Coeurjolly, Julie Digne, and Nicolas Mellado. 2020. Code Repli-
cability in Computer Graphics. ACM Trans. Graph. 39, 4, Article 93 (July 2020).

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon
mesh processing. CRC press.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex optimization.
Cambridge university press.

Cormullion. 2020. Asterisk. https://cormullion.github.io/pages/2020-10-09-asterisk/
Fernando De Goes and Doug L James. 2017. Regularized kelvinlets: sculpting brushes

based on fundamental solutions of elasticity. ACM Transactions on Graphics (TOG)
36, 4 (2017), 1–11.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von
Raumer. 2015. The Lean theorem prover (system description). In International Con-
ference on Automated Deduction. Springer, 378–388.

Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner.
2017. Opt: A Domain Specific Language for Non-Linear Least Squares Optimization

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

https://tatsu.readthedocs.io/
https://cormullion.github.io/pages/2020-10-09-asterisk/

264:14 • Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold

in Graphics and Imaging. ACM Trans. Graph. 36, 5 (Oct. 2017).
Iain Dunning, Joey Huchette, and Miles Lubin. 2017. JuMP: A Modeling Language for

Mathematical Optimization. SIAM Rev. 59, 2 (2017), 295–320.
Mohan Ganesalingam. 2013. The Language of Mathematics. Lecture Notes in Computer

Science, Vol. 7805. Springer Berlin Heidelberg, Berlin, Heidelberg.
Dietrich Geisler, Irene Yoon, Aditi Kabra, Horace He, Yinnon Sanders, and Adrian

Sampson. 2020. Geometry types for graphics programming. Proceedings of the
ACM on Programming Languages 4, OOPSLA (Nov. 2020), 1–25.

Oliver Glauser, Daniele Panozzo, Otmar Hilliges, and Olga Sorkine-Hornung. 2019.
Deformation capture via soft and stretchable sensor arrays. ACM Transactions on
Graphics (TOG) 38, 2 (2019), 1–16.

Michel Goossens, Frank Mittelbach, and Alexander Samarin. 1994. The LATEX com-
panion. Vol. 1. Addison-Wesley Reading.

Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex
Programming, version 2.1. http://cvxr.com/cvx.

John Gruber and Aaron Swartz. 2004. Markdown. https://daringfireball.net/projects/
markdown/

Pat Hanrahan and Jim Lawson. 1990. A language for shading and lighting calculations.
In Proceedings of the 17th annual conference on Computer graphics and interactive
techniques (SIGGRAPH ’90). Association for Computing Machinery, New York, NY,
USA, 289–298.

Yong He, Kayvon Fatahalian, and Tim Foley. 2018. Slang: language mechanisms for
extensible real-time shading systems. ACM Transactions on Graphics (TOG) 37, 4
(2018), 1–13.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019. Taichi: A Language for High-Performance Computation on Spatially Sparse
Data Structures. ACM Trans. Graph. 38, 6 (Nov. 2019).

Libo Huang, Torsten Hädrich, and Dominik L Michels. 2019. On the accurate large-
scale simulation of ferrofluids. ACM Transactions on Graphics (TOG) 38, 4 (2019),
1–15.

Kenneth E Iverson. 2007. Notation as a tool of thought. In ACM Turing award lectures.
1979.

Alec Jacobson. 2020. Geometry Processing Course.
https://github.com/alecjacobson/geometry-processing.

Alec Jacobson, Ladislav Kavan, and Olga Sorkine. 2013. Robust Inside-Outside Seg-
mentation using Generalized Winding Numbers. ACM Trans. Graph. 32, 4 (2013).

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. In-
stant Field-Aligned Meshes. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH ASIA) 34, 6 (Nov. 2015).

Timothy Jeruzalski, John Kanji, Alec Jacobson, and David IW Levin. 2018. Collision-
Aware and Online Compression of Rigid Body Simulations via Integrated Error
Minimization. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 11–20.

Peter Jipsen. 2005. AsciiMath. http://asciimath.org/
Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic elasticity for

inversion-safety and element rehabilitation. ACM Transactions on Graphics (TOG)
38, 4 (2019), 1–15.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe.
2017. The Tensor Algebra Compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article
77 (Oct. 2017), 77:1–77:29 pages.

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I. W. Levin, Shinjiro
Sueda, Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej Kanwar, Wojciech
Matusik, and SamanAmarasinghe. 2016. Simit: A Language for Physical Simulation.
ACM Transactions on Graphics 35, 2 (May 2016), 1–21.

Amy J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A practical guide to
controlled experiments of software engineering tools with human participants. Em-
pirical Software Engineering 20, 1 (Feb. 2015), 110–141.

Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek,
and Jaroslav Křivánek. 2019. Optimal multiple importance sampling. ACM Trans-
actions on Graphics (TOG) 38, 4 (2019), 1–14.

Leslie Lamport. 2012. How to write a 21st century proof. Journal of Fixed Point Theory
and Applications 11, 1 (March 2012), 43–63.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong
program analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. IEEE, 75–86.

Sören Laue, Matthias Mitterreiter, and Joachim Giesen. 2019. GENO – GENeric Op-
timization for Classical Machine Learning. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Binh Huy Le and JP Lewis. 2019. Direct delta mush skinning and variants. ACM Trans.
Graph. 38, 4 (2019), 113–1.

David B Lindell, GordonWetzstein, and Matthew O’Toole. 2019. Wave-based non-line-
of-sight imaging using fast fk migration. ACM Transactions on Graphics (TOG) 38,
4 (2019), 1–13.

Hsueh-Ti Derek Liu, Alec Jacobson, and Maks Ovsjanikov. 2019b. Spectral coarsening
of geometric operators. arXiv preprint arXiv:1905.05161 (2019).

Hao-Yu Liu, Xiao-Ming Fu, Chunyang Ye, Shuangming Chai, and Ligang Liu. 2019a.
Atlas refinement with bounded packing efficiency. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1–13.

J. Löfberg. 2004. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In
In Proceedings of the CACSD Conference. Taipei, Taiwan.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,
and Yaser Sheikh. 2019. Neural volumes: Learning dynamic renderable volumes
from images. arXiv preprint arXiv:1906.07751 (2019).

Leonard McMillan and Gary Bishop. 1995. Plenoptic modeling: An image-based ren-
dering system. In Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques. 39–46.

Ehsan Miandji, Saghi Hajisharif, and Jonas Unger. 2019. A unified framework for
compression and compressed sensing of light fields and light field videos. ACM
Transactions on Graphics (TOG) 38, 3 (2019), 1–18.

Ulf Norell. 2007. Towards a practical programming language based on dependent type
theory. Ph.D. Dissertation. Chalmers University of Technology and Goteborg Uni-
versity, Goteborg, Sweden.

Jiawei Ou and Fabio Pellacini. 2010. SafeGI: Type Checking to Improve Correctness
in Rendering System Implementation. Computer Graphics Forum 29, 4 (Aug. 2010),
1269–1277.

Daniele Panozzo, Enrico Puppo,Marco Tarini, andOlga Sorkine-Hornung. 2014. Frame
fields: Anisotropic and non-orthogonal cross fields. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 1–11.

Ken Perlin. 1985. An image synthesizer. ACM Siggraph Computer Graphics 19, 3 (1985),
287–296.

Reinhold Preiner, Tamy Boubekeur, and Michael Wimmer. 2019. Gaussian-product
subdivision surfaces. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–11.

Gerke Max Preussner. 2018. Dimensional Analysis in Programming Languages. https:
//gmpreussner.com/research/dimensional-analysis-in-programming-languages

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines. ACM Trans. Graph. 31, 4 (July 2012).

Sebastian Raschka. 2018. MLxtend: Providing machine learning and data science util-
ities and extensions to Python’s scientific computing stack. The Journal of Open
Source Software 3, 24 (April 2018).

Szymon Rusinkiewicz. 2019. A symmetric objective function for ICP. ACM Transac-
tions on Graphics (TOG) 38, 4 (2019), 1–7.

Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statistical
modeling with python. In 9th Python in Science Conference.

Nicholas Sharp et al. 2019a. Polyscope. www.polyscope.run.
Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019b. The vector heat method.

ACM Transactions on Graphics (TOG) 38, 3 (2019), 1–19.
Daniel Sieger and Mario Botsch. 2020. The Polygon Mesh Processing Library.

http://www.pmp-library.org.
Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic eigensystems

for isotropic distortion energies. ACM Transactions on Graphics (TOG) 38, 1 (2019).
Nathaniel Smith. 2014. PEP 465 – A dedicated infix operator for matrix multiplication.

https://www.python.org/dev/peps/pep-0465/
Daniele G. Spampinato and Markus Püschel. 2014. A Basic Linear Algebra Compiler.

In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization. ACM, Orlando FL USA, 23–32.

Terence Tao. 2020. What are the benefits of writing vector inner products as ⟨𝑢, 𝑣⟩ as
opposed to𝑢𝑇 𝑣? MathOverflow. arXiv:https://mathoverflow.net/q/366118 https://
mathoverflow.net/q/366118 URL:https://mathoverflow.net/q/366118 (version: 2020-
10-25).

The Coq Development Team. 2021. The Coq Proof Assistant. Language: en.
Mickeal Verschoor and Andrei C Jalba. 2019. Efficient and accurate collision response

for elastically deformablemodels. ACMTransactions on Graphics (TOG) 38, 2 (2019).
W3C. 2016. MathML. https://www.w3.org/Math/
Bohan Wang, George Matcuk, and Jernej Barbič. 2019. Hand modeling and simulation

using stabilized magnetic resonance imaging. ACM Transactions on Graphics (TOG)
38, 4 (2019), 1–14.

Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst, Damien Kelly, Michael
Krainin, Chia-Kai Liang, Marc Levoy, and Peyman Milanfar. 2019. Handheld multi-
frame super-resolution. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–18.

Yuting Yang, Sam Prestwood, and Connelly Barnes. 2016. VizGen: accelerating visual
computing prototypes in dynamic languages. ACM Transactions on Graphics (TOG)
35, 6 (2016), 1–13.

Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation
to beautiful diagrams. ACM Transactions on Graphics 39, 4 (July 2020).

Xiaoting Zhang, Guoxin Fang, Mélina Skouras, Gwenda Gieseler, Charlie Wang, and
Emily Whiting. 2019. Computational design of fabric formwork. ACM Transactions
on Graphics 38, 4 (2019), 1–13.

ACM Trans. Graph., Vol. 40, No. 6, Article 264. Publication date: December 2021.

http://cvxr.com/cvx
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
http://asciimath.org/
https://gmpreussner.com/research/dimensional-analysis-in-programming-languages
https://gmpreussner.com/research/dimensional-analysis-in-programming-languages
https://www.python.org/dev/peps/pep-0465/
https://arxiv.org/abs/https://mathoverflow.net/q/366118
https://mathoverflow.net/q/366118
https://mathoverflow.net/q/366118
https://www.w3.org/Math/

	Abstract
	1 Introduction
	2 Related Work
	3 Design Overview
	4 A Tour of the Language
	5 Compiler
	6 Evaluation
	6.1 Examples from the Wild
	6.2 Integrating with Existing Code
	6.3 A Statistical Estimate of Applicability

	7 User Study
	8 Conclusion
	Acknowledgments
	References

