LoCoPalettes: Local Control for Palette-based Image Editing

Cheng-Kang Ted Chao Jason Klein Jianchao Tan Jose Echevarria Yotam Gingold
Palette-based Image Recoloring
Palette-based Image Recoloring

- Palette selection and image editing
- [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]
Palette-based Image Recoloring

- Palette selection and image editing
- [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]
Palette-based Image Recoloring

- Palette selection and image editing
- [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]
Palette-based Image Recoloring

• Palette selection and image editing
 - [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]

Color space visualization: https://yig.github.io/image-rgb-in-3D/

Photo by Tobi
Palette-based Image Recoloring

- Palette selection and image editing
- [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]

\[I = W \cdot P \]

Photo by Tobi

Color space visualization: https://yig.github.io/image-rgb-in-3D/
Palette-based Image Recoloring

• Palette selection and image editing

• [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]

\[I = W \cdot P \]

Photo by Tobi

Color space visualization: https://yig.github.io/image-rgb-in-3D/
Palette-based Image Recoloring

• Palette selection and image editing

• [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]

$I = W \cdot P$

[Color space visualization: https://yig.github.io/image-rgb-in-3D/]

Photo by Tobi
Palette-based Image Recoloring

- Palette selection and image editing
- [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]

\[I = W \cdot P \]

Photo by Tobi

Color space visualization: https://yig.github.io/image-rgb-in-3D/
Palette-based Image Recoloring

- Palette selection and image editing
- [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]

\[I = W \cdot P \]

Photo by Tobi

Color space visualization: https://yig.github.io/image-rgb-in-3D/
Palette-based Image Recoloring

- Palette selection and image editing
- [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]

$\mathbf{I} = \mathbf{W} \cdot \mathbf{P}$

$I' = W \cdot P'$

Color space visualization: https://yig.github.io/image-rgb-in-3D/

Photo by Tobi
Palette-based Image Recoloring

- Palette selection and image editing
- [Chang et al. 2015], [Tan et al. 2016], [Tan et al. 2018], [Chao et al. 2021]

\[I = W \cdot P \]
\[I' = W \cdot P' \]

Color space visualization: https://yig.github.io/image-rgb-in-3D/
What’s the problem?
What’s the problem?

• How to change a color of a specific pixel into another color?
What’s the problem?

- How to change a color of a specific pixel into another color?
- It’s tedious when the color mixture of the pixel is nonobvious
What’s the problem?

• How to change a color of a specific pixel into another color?

• It’s tedious when the color mixture of the pixel is nonobvious
What’s the problem?

- How to change a color of a specific pixel into another color?
- It’s *tedious* when the color mixture of the pixel is nonobvious
What’s the problem?

• How to change a color of a specific pixel into another color?
• It’s tedious when the color mixture of the pixel is nonobvious
What’s the problem?

- How to change a color of a specific pixel into another color?
- It’s **tedious** when the color mixture of the pixel is nonobvious
What’s the problem?

• How to change a color of a specific pixel into another color?

• It’s tedious when the color mixture of the pixel is nonobvious.
What’s the problem?

- How to change a color of a specific pixel into another color?
- It’s tedious when the color mixture of the pixel is nonobvious
What’s the problem?

• How to change a color of a specific pixel into another color?

• It’s tedious when the color mixture of the pixel is nonobvious
What’s the problem?

• How to change a color of a specific pixel into another color?

• It’s **tedious** when the color mixture of the pixel is nonobvious
What’s the problem?

• How to change a color of a specific pixel into another color?

• It’s **tedious** when the color mixture of the pixel is nonobvious
ColorfulCurves [Chao et al. 2023]
The indirect editing problem can be solved by finding the sparsest palette change via an $L_{2,1}$ sparse optimization.
ColorfulCurves [Chao et al. 2023]

- The indirect editing problem can be solved by finding the **sparsest** palette change via an $L_{2,1}$ sparse optimization.
ColorfulCurves [Chao et al. 2023]

- The indirect editing problem can be solved by finding the \textit{sparsest} palette change via an $L_{2,1}$ sparse optimization.
ColorfulCurves [Chao et al. 2023]

- The indirect editing problem can be solved by finding the **sparsest** palette change via an $L_{2,1}$ sparse optimization.
The indirect editing problem can be solved by finding the sparsest palette change via an $L_{2,1}$ sparse optimization.
ColorfulCurves [Chao et al. 2023]

- The indirect editing problem can be solved by finding the **sparsest** palette change via an $L_{2,1}$ sparse optimization

\[
\min_{\Delta P} \| \Delta P \|_{2,1}
\]

subject to
ColorfulCurves [Chao et al. 2023]

- The indirect editing problem can be solved by finding the **sparsest** palette change via an $L_{2,1}$ sparse optimization.

\[
\min_{\Delta \mathbf{P}} \| \Delta \mathbf{P} \|_{2,1}
\]

subject to

\[
W \cdot (\mathbf{P} + \Delta \mathbf{P}) \Rightarrow \text{constraint}
\]
ColorfulCurves [Chao et al. 2023]

- The indirect editing problem can be solved by finding the **sparsest** palette change via an $L_{2,1}$ sparse optimization:

\[
\min_{\Delta P} \| \Delta P \|_{2,1}
\]

subject to

\[
W \cdot (P + \Delta P) = 1
\]
ColorfulCurves [Chao et al. 2023]

• The indirect editing problem can be solved by finding the sparsest palette change via an $L_{2,1}$ sparse optimization

$$\min_{\Delta P} \| \Delta P \|_{2,1}$$

subject to

$$W \cdot (I + \Delta P) = I'$$

$$I' = W \cdot (I + \Delta P)$$
ColorfulCurves [Chao et al. 2023]

- The indirect editing problem can be solved by finding the **sparsest** palette change via an $L_{2,1}$ sparse optimization.

\[
\begin{align*}
\min_{\Delta P} & \quad \| \Delta P \|_{2,1} \\
\text{subject to} & \quad W \cdot (\Delta P) = I'
\end{align*}
\]
There are still problems
There are *still* problems

- The applied edits are not sparse enough
There are still problems

- The applied edits are not sparse enough
- Why is sparsity important?
There are *still* problems

- The applied edits are not sparse enough
- Why is sparsity important?
There are *still* problems

- The applied edits are not sparse enough
- Why is sparsity important?
There are *still* problems

- The applied edits are not sparse enough
- Why is sparsity important?
There are *still* problems

- The applied edits are not sparse enough
- Why is sparsity important?
There are *still* problems

- The applied edits are not sparse enough
- Why is sparsity important?

[Tan et al. 2018]
There are *still* problems

- The applied edits are not sparse enough
- Why is sparsity important?
- It’s impossible to recolor *semantically*

[Tan et al. 2018]
There are *still* problems

- The applied edits are not sparse enough
- Why is sparsity important?
- It’s impossible to recolor *semantically*
- Two different objects share the same color

[Tan et al. 2018]
There are still problems

- The applied edits are not sparse enough
- Why is sparsity important?
- It’s impossible to recolor **semantically**
- Two different objects share the same color

[Tan et al. 2018]
There are still problems

- The applied edits are not sparse enough
- Why is sparsity important?
- It’s impossible to recolor *semantically*
- Two different objects share the same color

[Tan et al. 2018]
There are *still* problems

- The applied edits are not sparse enough
- Why is sparsity important?
- It’s impossible to recolor *semantically*
- Two different objects share the same color

[Tan et al. 2018]
There are still problems

- The applied edits are not sparse enough
- Why is sparsity important?
- It’s impossible to recolor semantically
- Two different objects share the same color

[Tan et al. 2018], [Chao et al. 2023]
Our Workflow

- Each edit needs to be applied in a sparse way
Our Workflow

• Each edit needs to be applied in a sparse way
• Each image-space constraint must be satisfied
Sparser Weights
Geometric Palette

- Two-level decomposition [Tan et al. 2018]
Geometric Palette

- Two-level decomposition [Tan et al. 2018]
Geometric Palette

- Two-level decomposition [Tan et al. 2018]
Geometric Palette

- Two-level decomposition [Tan et al. 2018]

RGB palette P

RGBXY convex hull vertices

Image I
Geometric Palette

- Two-level decomposition [Tan et al. 2018]
Geometric Palette

- Two-level decomposition [Tan et al. 2018]
Geometric Palette

- Two-level decomposition [Tan et al. 2018]
Geometric Palette

- Two-level decomposition [Tan et al. 2018]
Geometric Palette

- Two-level decomposition [Tan et al. 2018]
Geometric Palette

- Two-level decomposition [Tan et al. 2018]

\[I = W_{RGBXY} \cdot (W_{RGB} \cdot P) \]
Sparsest Weights

EGSR

THE 34TH EUROGRAPHICS SYMPOSIUM ON RENDERING

DELF

2023
Sparsest Weights

• Observation: how to achieve maximum sparsity?
Sparsest Weights

- Observation: how to achieve maximum sparsity?
- Compute generalized barycentric coordinates with respect to RGB palette
Sparsest Weights

- Observation: how to achieve maximum sparsity?
- Compute generalized barycentric coordinates with respect to RGB palette
Sparsest Weights

- Observation: how to achieve maximum sparsity?
- Compute generalized barycentric coordinates with respect to RGB palette
Sparsest Weights

- Observation: how to achieve maximum sparsity?
- Compute generalized barycentric coordinates with respect to RGB palette
Sparsest Weights

• Observation: how to achieve maximum sparsity?
• Compute generalized barycentric coordinates with respect to RGB palette
Sparsest Weights

- Observation: how to achieve maximum sparsity?
- Compute generalized barycentric coordinates with respect to RGB palette
Sparest Weights

• Observation: how to achieve maximum sparsity?

• Compute generalized barycentric coordinates with respect to RGB palette
Sparsest Weights

- Observation: how to achieve maximum sparsity?
- Compute generalized barycentric coordinates with respect to RGB palette
Sparsest Weights

- Observation: how to achieve maximum sparsity?
- Compute generalized barycentric coordinates with respect to RGB palette

[Reference: Tan et al. 2018]
Sparsest Weights

• Observation: how to achieve maximum sparsity?

• Compute generalized barycentric coordinates with respect to RGB palette

[Only RGB palette]

[Tan et al. 2018]
Sparker Weights

• Add some internal vertices to the RGBXY convex hull
Sparser Weights

• Add some internal vertices to the RGBXY convex hull

• Note: Sparsest weights = treating all pixel colors as internal vertices
Sparser Weights

• Add some internal vertices to the RGBXY convex hull

• Note: Sparsest weights = treating all pixel colors as internal vertices

• Randomly sample? Any luck? Sample size?
Sparser Weights

• Add *some* internal vertices to the RGBXY convex hull

• Note: Sparsest weights = treating all pixel colors as internal vertices

• Randomly sample? Any luck? Sample size?

• Intuition: internal vertices need to be reasonably distant from each other
Sparsers Weights

- Add \textit{some} internal vertices to the RGBXY convex hull
- Note: Sparest weights = treating all pixel colors as internal vertices
- Randomly sample? Any luck? Sample size?
- Intuition: internal vertices need to be reasonably distant from each other
- Concatenate image data with feature vectors [Aksoy et al. 2018] \(\rightarrow I_{RGBFEAXY} \)
Sparser Weights

- Add *some* internal vertices to the RGBXY convex hull
 - Note: Sparest weights = treating all pixel colors as internal vertices
 - Randomly sample? Any luck? Sample size?

- Intuition: internal vertices need to be reasonably distant from each other
 - Concatenate image data with feature vectors [Aksoy et al. 2018] → $I_{RGBFEAXY}$
 - Internal vertices are $V_A = \text{ConvexHull}(\text{PCA}(I_{RGBFEAXY}, \text{dim}=5))|_{RGBXY}$
Tan et al. 2018

Ours
[Tan et al. 2018]

Ours
Ours
Sparse Editing
Sparse Editing

- Follow [Chao et al. 2023]: Solve for minimum palette change
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints: $\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND$
Sparse Editing

- Follow [Chao et al. 2023]: Solve for minimum palette change

- image-space constraints: $\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND$
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints: \[\| LAB(w_x \cdot (P + \Delta P)) - LAB(c_x) \|_2 \leq JND \]
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints: \[\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND \]
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

 • image-space constraints: \[\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND \]

 • palette constraints: \((P + \Delta P)[j] = c_p\)
Sparse Editing

- Follow [Chao et al. 2023]: Solve for minimum palette change

- image-space constraints: $\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND$

- palette constraints: $(P + \Delta P)[j] = c_P$
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints: \(\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND \)

• palette constraints: \((P + \Delta P)[j] = c_P\)
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints: $\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND$

• palette constraints: $(P + \Delta P)[j] = c_p$

• All together:
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints: \(\| \text{LAB}(w_x \cdot (P + \Delta P)) - \text{LAB}(c_x) \|_2 \leq \text{JND} \)

• palette constraints: \((P + \Delta P)[j] = c_P \)

• All together:

\[\min_{\Delta P} \| \Delta P \|_{2,1} \]
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints: \[\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND \]

• palette constraints: \[(P + \Delta P)[j] = c_P \]

• All together:

\[\min_{\Delta P} \|\Delta P\|_{2,1} \]
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints: \[\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND \]

• palette constraints: \((P + \Delta P)[j] = c_P \)

• All together:

 • \[\min_{\Delta P} \|\Delta P\|_{2,1} \]
 • Subject to \(0 \leq P + \Delta P \leq 1 \) and
Sparse Editing

- Follow [Chao et al. 2023]: Solve for minimum palette change
 - image-space constraints: $\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND$
 - palette constraints: $(P + \Delta P)[j] = c_P$
- All together:
 - $\min_{\Delta P} \|\Delta P\|_{2,1}$
 - Subject to $0 \leq P + \Delta P \leq 1$ and $\textbf{1}$
Sparse Editing

• Follow [Chao et al. 2023]: Solve for minimum palette change

• image-space constraints:

\[\|LAB(w_x \cdot (P + \Delta P)) - LAB(c_x)\|_2 \leq JND \]

• palette constraints:

\((P + \Delta P)[j] = c_P \)

• All together:

\[\min_{\Delta P} \|\Delta P\|_{2,1} \]

• Subject to

\(0 \leq P + \Delta P \leq 1 \) and

[1] [2]
Input

[Tan et al. 2018] 16x palette manipulations
Input
LoCoPalettes [Tan et al. 2018]

16\times\text{palette manipulations}
LoCoPalettes

[Tan et al. 2018]

16x palette manipulations
Input

LoCoPalettes

[Tan et al. 2018]

16x palette manipulations

29x palette manipulations
Local Control
Palette and Weight Hierarchy

Definition
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
- Each node: local palette, local weights, local soft mask
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
- Each node: local palette, local weights, local soft mask
- DETR [Carion et al. 2020]'s panoptic segmentation
Palette and Weight Hierarchy

Definition

• Hierarchical data structure to support local edits
 - Each node: local palette, local weights, local soft mask
 - DETR [Carion et al. 2020]'s panoptic segmentation
 - Root → Classes → Instances
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
- Each node: local palette, local weights, local soft mask
- DETR [Carion et al. 2020]'s panoptic segmentation
 - Root \rightarrow Classes \rightarrow Instances
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
- Each node: local palette, local weights, local soft mask
- DETR [Carion et al. 2020]'s panoptic segmentation
 - Root → Classes → Instances
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
- Each node: local palette, local weights, local soft mask
- DETR [Carion et al. 2020]'s panoptic segmentation
- Root → Classes → Instances
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
- Each node: local palette, local weights, local soft mask
- DETR [Carion et al. 2020]'s panoptic segmentation
 - Root → Classes → Instances
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
- Each node: local palette, local weights, local soft mask
- DETR [Carion et al. 2020]'s panoptic segmentation
 - Root → Classes → Instances
Palette and Weight Hierarchy

Definition

- Hierarchical data structure to support local edits
- Each node: local palette, local weights, local soft mask
- DETR [Carion et al. 2020]'s panoptic segmentation
 - Root \rightarrow Classes \rightarrow Instances
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

P_0

P_1

P_2

P_3
Editing Example

Image I

P_i, W_i

$P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3$
Sparse Editing with Hierarchy
Palette splitting rules
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
Sparse Editing *with* Hierarchy

Palette splitting rules

- Store booleans to track node activations

\[\begin{align*}
a_0 &= \text{True} \\
a_1 &= \text{False} \\
a_2 &= \text{False} \\
a_3 &= \text{False} \\
a_4 &= \text{False} \\
a_5 &= \text{False}
\end{align*} \]
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it

\(a_0 = \text{True} \)
\(a_1 = \text{False} \)
\(a_2 = \text{False} \)
\(a_3 = \text{False} \)
\(a_4 = \text{False} \)
\(a_5 = \text{False} \)
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it.
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it

Run Sparse Editing Optimization!
Sparse Editing with Hierarchy

Palette splitting rules

• Store booleans to track node activations

• A new image-space constraint starts at the most local (deepest) active node containing it

• Optimization fails \rightarrow activate the next deeper node containing it

\[a_0 = \text{True}, \quad a_1 = \text{False}, \quad a_2 = \text{False}, \quad a_3 = \text{False}, \quad a_4 = \text{False}, \quad a_5 = \text{False} \]
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it
- Optimization fails → activate the next deeper node containing it

\[a_0 = \text{True} \]
\[a_1 = \text{False} \]
\[a_2 = \text{False} \]
\[a_3 = \text{False} \]
\[a_4 = \text{False} \]
\[a_5 = \text{False} \]

Run Sparse Editing Optimization!
Sparse Editing *with* Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it
- Optimization fails → activate the next deeper node containing it

\[
\begin{align*}
a_0 &= \text{True} \\
a_1 &= \text{False} \\
a_2 &= \text{False} \\
a_3 &= \text{False} \\
a_4 &= \text{False} \\
a_5 &= \text{False}
\end{align*}
\]

Run Sparse Editing Optimization!
Sparse Editing with Hierarchy
Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it
- Optimization fails → activate the next deeper node containing it

Run Sparse Editing Optimization!

\[
a_0 = \text{True} \quad a_1 = \text{False} \quad a_2 = \text{False} \quad a_3 = \text{False} \quad a_4 = \text{False} \quad a_5 = \text{False}
\]
Sparse Editing with Hierarchy
Palette splitting rules

• Store booleans to track node activations

• A new image-space constraint starts at the most local (deepest) active node containing it

• Optimization fails → activate the next deeper node containing it
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it
- Optimization fails \rightarrow activate the next deeper node containing it

P0

\[
\begin{align*}
a_0 &= \text{True} \\
a_1 &= \text{False} \\
a_2 &= \text{False} \\
a_3 &= \text{False} \\
a_4 &= \text{False} \\
a_5 &= \text{False}
\end{align*}
\]
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it
- Optimization fails ➔ activate the next deeper node containing it

\[
\begin{align*}
& a_0 = \text{True} \\
& a_1 = \text{False} \\
& a_2 = \text{False} \\
& a_3 = \text{False} \\
& a_4 = \text{False} \\
& a_5 = \text{False}
\end{align*}
\]
Sparse Editing with Hierarchy

Palette splitting rules

- Store booleans to track node activations
- A new image-space constraint starts at the most local (deepest) active node containing it
- Optimization fails → activate the next deeper node containing it

\[
\begin{align*}
a_0 &= \text{True} \\
a_1 &= \text{False} \\
a_2 &= \text{False} \\
a_3 &= \text{False} \\
a_4 &= \text{False} \\
a_5 &= \text{False}
\end{align*}
\]
Palette and Weight Hierarchy

Reconstruction

\[a_0 = \text{True} \]
\[a_1 = \text{True} \]
\[a_2 = \text{False} \]
\[a_3 = \text{False} \]
\[a_4 = \text{False} \]
\[a_5 = \text{False} \]
Palette and Weight Hierarchy

Reconstruction

- How to reconstruct the edited image under the hierarchy?
• How to reconstruct the edited image under the hierarchy?

• Alpha compositing over activated nodes
Palette and Weight Hierarchy

Reconstruction

• How to reconstruct the edited image under the hierarchy?

• Alpha compositing over activated nodes

• Leaf palettes are more local!
Palette and Weight Hierarchy

Reconstruction

• How to reconstruct the edited image under the hierarchy?

• Alpha compositing over activated nodes

• Leaf palettes are more local!
Palette and Weight Hierarchy

Palette Propagation

\[a_0 = \text{True} \]
\[a_1 = \text{True} \]
\[a_2 = \text{False} \]
\[a_3 = \text{False} \]
\[a_4 = \text{False} \]
\[a_5 = \text{False} \]
Palette and Weight Hierarchy

Palette Propagation

- Propagate changes towards leaf palettes if **not activated**
Palette and Weight Hierarchy

Palette Propagation

- Propagate changes towards leaf palettes if **not activated**

\[
\min_{\mathbf{P}_c} \| \mathbf{W}_c \cdot \mathbf{P}_c - \mathbf{W}_p \cdot \mathbf{P}_p \|_2^2
\]
Palette and Weight Hierarchy

Palette Propagation

• Propagate changes towards leaf palettes if **not activated**

\[
\min_{P_c} \| W_c \cdot P_c - W_p \cdot P_p \|^2_2
\]

• Subject to \(0 \leq P_c \leq 1\)
Palette and Weight Hierarchy

Palette Propagation

- Propagate changes towards leaf palettes if not activated

\[
\min_{P_c} \| W_c \cdot P_c - W_p \cdot P_p \|_2^2
\]

- Subject to \(0 \leq P_c \leq 1 \)

\(a_0 = \text{True} \)
\(a_1 = \text{True} \)
\(a_2 = \text{False} \)
\(a_3 = \text{False} \)
\(a_4 = \text{False} \)
\(a_5 = \text{False} \)
Palette and Weight Hierarchy

Palette Propagation

- Propagate changes towards leaf palettes if **not activated**

\[
\min_{P_c} \left\| W_c \cdot P_c - W_p \cdot P_p \right\|_2^2
\]

- Subject to \(0 \leq P_c \leq 1\)

Small \(p \times p\) quadratic programming problem!
Palette and Weight Hierarchy

Palette Propagation

- Propagate changes towards leaf palettes if not activated

\[
\min_{P_c} \left\| W_c \cdot P_c - W_p \cdot P_p \right\|^2_2
\]

- Subject to \(0 \leq P_c \leq 1 \)

Small \(p \times p \) quadratic programming problem!
Palette and Weight Hierarchy

Palette Propagation

- Propagate changes towards leaf palettes if not activated

\[
\min_{P_c} \left\| W_c \cdot P_c - W_p \cdot P_p \right\|_2^2
\]

- Subject to \(0 \leq P_c \leq 1\)

Small \(p \times p\) quadratic programming problem!
Palette and Weight Hierarchy

Palette Propagation

• Propagate changes towards leaf palettes if not activated

\[
\min_{P_c} \| W_c \cdot P_c - W_p \cdot P_p \|_2^2
\]

• Subject to \(0 \leq P_c \leq 1 \)

Small \(p \times p \) quadratic programming problem!

\(a_0 = \text{True} \)
\(a_1 = \text{True} \)
\(a_2 = \text{False} \)
\(a_3 = \text{False} \)
\(a_4 = \text{False} \)
\(a_5 = \text{False} \)
Palette and Weight Hierarchy

Palette Propagation

- Propagate changes towards leaf palettes if **not activated**

$$\min_{P_c} \|W_c \cdot P_c - W_p \cdot P_p\|_2^2$$

- Subject to $0 \leq P_c \leq 1$

Small $p \times p$ quadratic programming problem!
Palette and Weight Hierarchy

Palette Propagation

- Propagate changes towards leaf palettes if **not activated**

\[
\min_{P_c} \| W_c \cdot P_c - W_p \cdot P_p \|_2^2
\]

- Subject to \(0 \leq P_c \leq 1 \)

Small \(p \times p \) quadratic programming problem!
Input

LoCoPalettes

[Tan et al. 2018]
Input LoCoPalettes [Tan et al. 2018]
LoCoPalettes

[LoCoPalettes]

[Tan et al. 2018]
LoCoPalettes

[Tan et al. 2018]
Input

LoCoPalettes

[Tan et al. 2018]

13× palette manipulations
Input
LoCoPalettes

[Tan et al. 2018]
Input

LoCoPalettes

[Tan et al. 2018]
LoCoPalettes

[LoCoPalettes]

Input

LoCoPalettes

[Tan et al. 2018]

17x palette manipulations
Conclusion

• LoCoPalettes provides **local** control for palette-based editing
Conclusion

- LoCoPalettes provides local control for palette-based editing
- Extends [Chao et al. 2023] to a palette hierarchy
Conclusion

- LoCoPalettes provides **local** control for palette-based editing
- Extends [Chao et al. 2023] to a palette hierarchy
- Improves weight sparsity while maintaining spatial coherence
Conclusion

- LoCoPalettes provides **local** control for palette-based editing
 - Extends [Chao et al. 2023] to a palette hierarchy
 - Improves weight sparsity while maintaining spatial coherence

- Limitations
Conclusion

• LoCoPalettes provides local control for palette-based editing
 • Extends [Chao et al. 2023] to a palette hierarchy
 • Improves weight sparsity while maintaining spatial coherence

• Limitations
 • Relies on high-quality hierarchical segmentation
Conclusion

• LoCoPalettes provides **local** control for palette-based editing
 • Extends [Chao et al. 2023] to a palette hierarchy
 • Improves weight sparsity while maintaining spatial coherence

• Limitations
 • Relies on high-quality hierarchical segmentation
Conclusion

• LoCoPalettes provides local control for palette-based editing
 • Extends [Chao et al. 2023] to a palette hierarchy
 • Improves weight sparsity while maintaining spatial coherence

• Limitations
 • Relies on high-quality hierarchical segmentation
Conclusion

• LoCoPalettes provides local control for palette-based editing
 • Extends [Chao et al. 2023] to a palette hierarchy
 • Improves weight sparsity while maintaining spatial coherence

• Limitations
 • Relies on high-quality hierarchical segmentation
Conclusion

• LoCoPalettes provides **local** control for palette-based editing
 • Extends [Chao et al. 2023] to a palette hierarchy
 • Improves weight sparsity while maintaining spatial coherence

• Limitations
 • Relies on high-quality hierarchical segmentation
Conclusion

• LoCoPalettes provides local control for palette-based editing
 • Extends [Chao et al. 2023] to a palette hierarchy
 • Improves weight sparsity while maintaining spatial coherence

• Limitations
 • Relies on high-quality hierarchical segmentation

• Future Work
Conclusion

• LoCoPalettes provides **local** control for palette-based editing
 - Extends [Chao et al. 2023] to a palette hierarchy
 - Improves weight sparsity while maintaining spatial coherence

• **Limitations**
 - Relies on high-quality hierarchical segmentation

• **Future Work**
 - Palette-based video editing, e.g. [Du et al. 2021]
Conclusion

• LoCoPalettes provides **local** control for palette-based editing
 • Extends [Chao et al. 2023] to a palette hierarchy
 • Improves weight sparsity while maintaining spatial coherence

• Limitations
 • Relies on high-quality hierarchical segmentation

• Future Work
 • Palette-based video editing, e.g. [Du et al. 2021]
 • Speed up local palette computation from a global palette
Conclusion

• LoCoPalettes provides \textit{local} control for palette-based editing
 • Extends [Chao et al. 2023] to a palette hierarchy
 • Improves weight sparsity while maintaining spatial coherence

• Limitations
 • Relies on high-quality hierarchical segmentation

• Future Work
 • Palette-based video editing, e.g. [Du et al. 2021]
 • Speed up local palette computation from a global palette
 • Text-guided color manipulations
Thank you

• Project page: https://cragl.cs.gmu.edu/locopalettes/
• Code and data: https://github.com/tedchao/LoCoPalettes
• Financial support
 • Adobe
Evaluation

KNN Matting [Chen et al. 2013]
Sparsity Evaluation

<table>
<thead>
<tr>
<th>Sparsity Estimate:</th>
<th>Tan et al. [2016]</th>
<th>Aksoy et al. [2017]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tan et al. [2018]</td>
<td>Ours</td>
</tr>
<tr>
<td>Mountain</td>
<td>0.2630</td>
<td>0.2586</td>
</tr>
<tr>
<td>Birds</td>
<td>0.2670</td>
<td>0.2614</td>
</tr>
<tr>
<td>Colorful</td>
<td>0.2549</td>
<td>0.2511</td>
</tr>
<tr>
<td>Boy</td>
<td>0.2676</td>
<td>0.2638</td>
</tr>
</tbody>
</table>