PosterChild: Blend-Aware Artistic Posterization

Cheng-Kang Ted Chao George Mason University
Karan Singh University of Toronto
Yotam Gingold George Mason University
Artistic Posterization
Artistic Posterization
Artistic Posterization
Artistic Posterization
Artistic Posterization
Saarland University
Saarland University
Saarland University
Previous Work: [Xu and Kaplan 2008], [Gerstner et al. 2013], [Afifi 2018]
Problem Statement
Problem Statement

• Create a posterized image using a discrete set of colors representing the input image and also provided convenient handles for recoloring.
• Existing automatic posterization tools produce output quite different from artists.
• Manual approaches are time-consuming.
Problem Statement

• Create a posterized image using a discrete set of colors representing the input image and also provided convenient handles for recoloring.
• Existing automatic posterization tools produce output quite different from artists.
• Manual approaches are time-consuming.
Problem Statement

• Create a posterized image using a discrete set of colors representing the input image and also provided convenient handles for recoloring.
• Existing automatic posterization tools produce output quite different from artists.
• Manual approaches are time-consuming.
Problem Statement

• Create a posterized image using a discrete set of colors representing the input image and also provided convenient handles for recoloring.
• Existing automatic posterization tools produce output quite different from artists.
• Manual approaches are time-consuming.

Photoshop’s Posterization Filter
Problem Statement

- Create a posterized image using a discrete set of colors representing the input image and also provided convenient handles for recoloring.
- Existing automatic posterization tools produce output quite different from artists.
- Manual approaches are time-consuming.

Photoshop’s Posterization Filter

Artist’s Creation
Our Approach

• Step 1: Choose a color palette
 • Step 2: Form approximate solid-color regions
 • Step 3: Improve region color blends
 • Step 4: Improve region boundaries
Our Approach

• Step 1: Convex-hull based palette extraction
• Step 2: Form approximate solid-color regions
• Step 3: Improve region color blends
• Step 4: Improve region boundaries
Our Approach

• Step 1: Convex-hull based palette extraction
• Step 2: Form approximate solid-color regions
• Step 3: Improve region color blends
• Step 4: Improve region boundaries
Our Approach

- Step 1: Convex-hull based palette extraction
- Step 2: Form approximate solid-color regions
- Step 3: Improve region color blends
- Step 4: Improve region boundaries
Our Approach

- Step 1: Choose a color palette
- **Step 2: Form approximate solid-color regions**
- Step 3: Improve region color blends
- Step 4: Improve region boundaries
Our Approach

- Step 1: Choose a color palette
- Step 2: Rough region and color assignment
- Step 3: Improve region color blends
- Step 4: Improve region boundaries
Our Approach

• Step 1: Choose a color palette
• Step 2: Rough region and color assignment
• Step 3: Improve region color blends
• Step 4: Improve region boundaries
Our Approach

- Step 1: Choose a color palette
- Step 2: Form approximate solid-color regions
- Step 3: Improve region color blends
- Step 4: Improve region boundaries
Our Approach

- Step 1: Choose a color palette
- Step 2: Form approximate solid-color regions
- Step 3: Blend refinement
- Step 4: Improve region boundaries
Our Approach

- Step 1: Choose a color palette
- Step 2: Form approximate solid-color regions
- Step 3: Blend refinement
- Step 4: Improve region boundaries
Our Approach

- Step 1: Choose a color palette
- Step 2: Form approximate solid-color regions
- Step 3: Blend refinement
- Step 4: Improve region boundaries
Our Approach

• Step 1: Choose a color palette
• Step 2: Form approximate solid-color regions
• Step 3: Blend refinement
• Step 4: Improve region boundaries
Our Approach

- Step 1: Choose a color palette
- Step 2: Form approximate solid-color regions
- Step 3: Blend refinement
- Step 4: Improve region boundaries
Our Approach

• Step 1: Choose a color palette
• Step 2: Form approximate solid-color regions
• Step 3: Improve region color blends
• Step 4: Improve region boundaries
Our Approach

- Step 1: Choose a color palette
- Step 2: Form approximate solid-color regions
- Step 3: Improve region color blends
- Step 4: Region boundary smoothing
Our Approach

• Step 1: Choose a color palette
• Step 2: Form approximate solid-color regions
• Step 3: Improve region color blends
• Step 4: Region boundary smoothing
Our Approach

• Step 1: Choose a color palette
• Step 2: Form approximate solid-color regions
• Step 3: Improve region color blends
• Step 4: Region boundary smoothing
Our Approach

- Step 1: Choose a color palette
- Step 2: Form approximate solid-color regions
- Step 3: Improve region color blends
- Step 4: Region boundary smoothing
Step 1: Convex-hull based palette extraction
Step 1: Convex-hull based palette extraction

- Goal: Find a small set of colors to represent the image.
Step 1: Convex-hull based palette extraction

- Goal: Find a small set of colors to represent the image.
- Allow blends of any two palette colors.
Step 1: Convex-hull based palette extraction

- Goal: Find a small set of colors to represent the image.
- Allow blends of any two palette colors.
- We follow [Tan et al. 2016]’s simplified convex-hull approach.
Step 1: Convex-hull based palette extraction

- Goal: Find a small set of colors to represent the image.
- Allow blends of any two palette colors.
- We follow [Tan et al. 2016]’s simplified convex-hull approach.
- Improvement: We use K-means to reduce outlier sensitivity. See paper for details.
Step 1: Convex-hull based palette extraction

- Goal: Find a small set of colors to represent the image.
- Allow blends of any two palette colors.
- We follow [Tan et al. 2016]'s simplified convex-hull approach.
- Improvement: We use K-means to reduce outlier sensitivity. See paper for details.
Goal: Find a small set of colors to represent the image.
Allow blends of any two palette colors.
We follow [Tan et al. 2016]’s simplified convex-hull approach.
Improvement: We use K-means to reduce outlier sensitivity. See paper for details.
Step 1: Convex-hull based palette extraction

- Goal: Find a small set of colors to represent the image.
- Allow blends of any two palette colors.
- We follow [Tan et al. 2016]'s simplified convex-hull approach.
- Improvement: We use K-means to reduce outlier sensitivity. See paper for details.
Goal: Find a small set of colors to represent the image.
Allow blends of any two palette colors.
We follow [Tan et al. 2016]’s simplified convex-hull approach.
Improvement: We use K-means to reduce outlier sensitivity. See paper for details.
Step 1: Convex-hull based palette extraction

- Goal: Find a small set of colors to represent the image.
- Allow blends of any two palette colors.
- We follow [Tan et al. 2016]’s simplified convex-hull approach.
- Improvement: We use K-means to reduce outlier sensitivity. See paper for details.
Step 2: Rough region and color assignment
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.
Step 2: Rough region and color assignment

- **Goal:** Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.

$$E_{data} = \sum_{p \in I} \|R_p - I_p\|_2$$
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.

$$E_{data} = \sum_{p \in I} ||R_p - I_p||_2$$
Step 2: Rough region and color assignment

- **Goal**: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel's input color I_p and its region color R_p.

$$E_{data} = \sum_{p \in I} ||R_p - I_p||_2$$
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.
 \[
 E_{data} = \sum_{p \in I} \|R_p - I_p\|_2
 \]
- $E_{pairwise}$ penalizes neighboring pixels with different region labels L_p and L_q.
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.
 \[E_{data} = \sum_{p \in I} \| R_p - I_p \|_2 \]
- $E_{pairwise}$ penalizes neighboring pixels with different region labels L_p and L_q.
 \[E_{pairwise} = \sum_{p,q \in N} \| L_p - L_q \|_2 \]
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).

- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.

$$E_{data} = \sum_{p \in I} ||R_p - I_p||_2$$

- $E_{pairwise}$ penalizes neighboring pixels with different region labels L_p and L_q.

$$E_{pairwise} = \sum_{p, q \in N} ||L_p - L_q||_2$$
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.
 \[E_{data} = \sum_{p \in I} \| R_p - I_p \|_2 \]
- $E_{pairwise}$ penalizes neighboring pixels with different region labels L_p and L_q.
 \[E_{pairwise} = \sum_{p,q \in N} \| L_p - L_q \|_2 \]
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.
 \[
 E_{data} = \sum_{p \in I} ||R_p - I_p||_2
 \]
- $E_{pairwise}$ penalizes neighboring pixels with different region labels L_p and L_q.
 \[
 E_{pairwise} = \sum_{p,q \in N} ||L_p - L_q||_2
 \]
Step 2: Rough region and color assignment

- Goal: Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.

$$E_{data} = \sum_{p \in I} \| R_p - I_p \|_2$$

- $E_{pairwise}$ penalizes neighboring pixels with different region labels L_p and L_q.

$$E_{pairwise} = \sum_{p,q \in N} \| L_p - L_q \|_2$$

- Overall objective function: $E(f) = E_{data}(f) + \lambda E_{pairwise}(f)$
Step 2: Rough region and color assignment

- **Goal:** Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel's input color I_p and its region color R_p,
 \[
 E_{data} = \sum_{p \in I} \|R_p - I_p\|_2
 \]
- $E_{pairwise}$ penalizes neighboring pixels with different region labels L_p and L_q,
 \[
 E_{pairwise} = \sum_{p,q \in N} \|L_p - L_q\|_2
 \]
- **Overall objective function:** $E(f) = E_{data}(f) + \lambda E_{pairwise}(f)$
 - λ controls the clumpiness of the regions in the output.
Step 2: Rough region and color assignment

- **Goal:** Partition the image into regions that approximate the input (E_{data}) with spatial consistency ($E_{pairwise}$).
- E_{data} penalizes the difference between a pixel’s input color I_p and its region color R_p.
 \[E_{data} = \sum_{p \in I} \|R_p - I_p\|_2 \]
- $E_{pairwise}$ penalizes neighboring pixels with different region labels L_p and L_q.
 \[E_{pairwise} = \sum_{p,q \in N} \|L_p - L_q\|_2 \]
- **Overall objective function:** $E(f) = E_{data}(f) + \lambda E_{pairwise}(f)$
- λ controls the clumpiness of the regions in the output.
- We solve this problem with multi-label optimization [Boykov and Kolmogorov 2001].
Step 2: Rough region and color assignment

\[\min E(f) \]
Step 2: Rough region and color assignment

\[\min E(f) \]
Step 2: Rough region and color assignment

\[\min E(f) \]
Step 2: Rough region and color assignment

\[\text{min } E(f) \]
Step 2: Rough region and color assignment

\[\min E(f) \]
Step 2: Rough region and color assignment
Step 2: Rough region and color assignment

• Palette colors P from palette extraction in step 1.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.

$P_i \ldots P_j$
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.

\[P_i \quad \ldots \quad d \quad \ldots \quad P_j \]
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.

\[P_i \quad \bullet \quad d \quad \ldots \quad \bullet P_j \]
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.

$$d = 0$$
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.

![Diagram of color blending](image)

Input $d = 0$ $d = 1$
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.

![Diagram showing pairwise blends](image)
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 2: Rough region and color assignment

- Palette colors P from palette extraction in step 1.
- Pairwise blends from palette colors P with weights.
Step 3&4: Region Refinement

- Step 3: Assign each region a continuous rather than discrete blend.
- Step 4: Smooth region boundaries with a frequency-guided median filter.
- See our paper for details.
Step 3 & 4: Region Refinement

- Step 3: Assign each region a continuous rather than discrete blend.
- Step 4: Smooth region boundaries with a frequency-guided median filter.
- See our paper for details.
Step 3&4: Region Refinement

• Step 3: Assign each region a continuous rather than discrete blend.
• Step 4: Smooth region boundaries with a frequency-guided median filter.
• See our paper for details.
Step 3&4: Region Refinement

- Step 3: Assign each region a continuous rather than discrete blend.
- Step 4: Smooth region boundaries with a frequency-guided median filter.
- See our paper for details.
Step 3&4: Region Refinement

- Step 3: Assign each region a continuous rather than discrete blend.
- Step 4: Smooth region boundaries with a frequency-guided median filter.
- See our paper for details.
Results
Results
Results
Results
Evaluation
Evaluation

• Comparison to related approaches.
Evaluation

• Comparison to related approaches.

Input

[Afifi 2018]

[Xu and Kaplan 2008]

Direct K-means
(K=7 in RGB-space)

Direct K-means
(K=44 in RGB-space)

Direct K-means
(K=10 in RGBXY-space)

Ours
Evaluation

• Comparison to related approaches.
Evaluation

- Comparison to related approaches.

Input

[Afifi 2018] [Xu and Kaplan 2008] Direct K-means
(K=7 in RGB-space) Direct K-means
(K=44 in RGB-space) Direct K-means
(K=10 in RGBXY-space) Ours
Evaluation

- Comparison to related approaches.
Evaluation

• Comparison to related approaches.
Evaluation

- Comparison to related approaches.
Evaluation

- Comparison to related approaches.
- Expert study with professional artists.
Evaluation

• Comparison to related approaches.
• Expert study with professional artists.
Evaluation

- Comparison to related approaches.
- Expert study with professional artists.
- See paper for the details.
Conclusion
Conclusion

• PosterChild shows:
Conclusion

• PosterChild shows:
 • Qualitatively similar to those created by artists in a time-consuming manner.
Conclusion

- PosterChild shows:
 - Qualitatively similar to those created by artists in a time-consuming manner.
Conclusion

• PosterChild shows:
 • Qualitatively similar to those created by artists in a time-consuming manner.
 • Easy to do palette-based recoloring on posters in real-time.
Conclusion

• PosterChild shows:
 • Qualitatively similar to those created by artists in a time-consuming manner.
 • Easy to do palette-based recoloring on posters in real-time.
 • Aesthetically outperform state-of-the-art automatic posterization tools.
Conclusion

• PosterChild shows:
 • Qualitatively similar to those created by artists in a time-consuming manner.
 • Easy to do palette-based recoloring on posters in real-time.
 • Aesthetically outperform state-of-the-art automatic posterization tools.

• Limitations:
Conclusion

• PosterChild shows:
 • Qualitatively similar to those created by artists in a time-consuming manner.
 • Easy to do palette-based recoloring on posters in real-time.
 • Aesthetically outperform state-of-the-art automatic posterization tools.

• Limitations:
 • Only allows real-time recoloring.
Conclusion

• PosterChild shows:
 • Qualitatively similar to those created by artists in a time-consuming manner.
 • Easy to do palette-based recoloring on posters in real-time.
 • Aesthetically outperform state-of-the-art automatic posterization tools.

• Limitations:
 • Only allows real-time recoloring.
 • Slow performance on outlier removal.
Conclusion

• **PosterChild shows:**
 • Qualitatively similar to those created by artists in a time-consuming manner.
 • Easy to do palette-based recoloring on posters in real-time.
 • Aesthetically outperform state-of-the-art automatic posterization tools.

• **Limitations:**
 • Only allows real-time recoloring.
 • Slow performance on outlier removal.
 • Does not recognize the semantics of input images.
Thank You

• Code and GUI will be available at: https://cragl.cs.gmu.edu/
• Financial support
 • NSERC
Thank You

- Code and GUI will be available at: https://cragl.cs.gmu.edu/
- Financial support
 - NSERC
Step 1: Convex-hull based palette extraction
Step 1: Convex-hull based palette extraction

- [Wang et al. 2019] observed that convex-hull based palettes are sensitive to outliers.
Step 1: Convex-hull based palette extraction

- [Wang et al. 2019] observed that convex-hull based palettes are sensitive to outliers.
- K-means as a relaxation on the input RGB colors.
Step 1: Convex-hull based palette extraction

Input

Direct K-means clustering result

Posterized image (K-means clustering to eliminate outliers)

Posterized image (without K-means clustering to eliminate outliers)
Step 1: Convex-hull based palette extraction

- **Input**
- **Direct K-means clustering result**
- **Posterized image (K-means clustering to eliminate outliers)**
- **Posterized image (without K-means clustering to eliminate outliers)**
Step 1: Convex-hull based palette extraction

- Input
- Direct K-means clustering result
- Posterized image (K-means clustering to eliminate outliers)
- Posterized image (without K-means clustering to eliminate outliers)
Step 1: Convex-hull based palette extraction

Input

Direct K-means clustering result

Posterized image (K-means clustering to eliminate outliers)

Posterized image (without K-means clustering to eliminate outliers)
Step 1: Convex-hull based palette extraction

- **Input**
- **Direct K-means clustering result**
- **Posterized image (K-means clustering to eliminate outliers)**
- **Posterized image (without K-means clustering to eliminate outliers)**
Step 2: Rough region and color assignment
Step 2: Rough region and color assignment

Input

\[\lambda = 0.1 \]

\[\lambda = 1.0 \]

\[\lambda = 3.0 \]
Step 2: Rough region and color assignment

Input

\[
\lambda = 0.1 \quad \lambda = 1.0 \quad \lambda = 3.0
\]

\[
\min \sum_{p \in I} |f_p - I_p|_2 + \lambda \sum_{p,q \in N} |L_p - L_q|_2
\]
Step 2: Rough region and color assignment

\[
\min \sum_{p \in I} ||f_p - I_p||_2 + \lambda \sum_{p,q \in N} ||L_p - L_q||_2
\]