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Figure 1: ScafoldSketch user inputs and system outputs. (a) The scafold strokes a user drew in VR. (b) The auto-corrected 
scafold from the user’s strokes. (c) The shape strokes the user drew in VR. (d) The auto-corrected shape from the user’s strokes 
and the scafold. 

ABSTRACT 
We present an approach to in-air design drawing based on the 
two-stage approach common in 2D design drawing practice. The 
primary challenge to 3D drawing in-air is the accuracy of users’ 
strokes. Beautifying or auto-correcting an arbitrary drawing in 
2D or 3D is challenging due to ambiguities stemming from many 
possible interpretations of a stroke. A similar challenge appears 
when drawing freehand on paper in the real world. 2D design 
drawing practice (as taught in industrial design school) addresses 
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this by decomposing the process of creating realistic 2D projections 
of 3D shapes. Designers frst create scafold or construction lines. 
When drawing shape or structure curves, designers are guided by 
the scafolds. Our key insight is that accurate industrial design 
drawing in 3D becomes tractable when decomposed into auto-
correcting scafold strokes, which have simple relationships with 
one another, followed by auto-correcting shape strokes with respect 
to the scafold strokes. We demonstrate our approach’s efectiveness 
with an expert study involving industrial designers. 

CCS CONCEPTS 
• Human-centered computing → Virtual reality; Interactive 
systems and tools; • Computing methodologies → Shape mod-
eling. 
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1 INTRODUCTION 
Industrial designers invest years learning and practicing a particu-
lar approach to drawing perspective views of 3D shapes [14, 20, 21, 
26, 41, 44]. These design drawings are lossy projections of an often 
de novo 3D form in their mind. Designers learn to draw scafolds to 
help them create accurate and aesthetic projections of 3D shapes 
(Figure 2). A set of construction lines serves as a scafold for the de-
scriptive lines that depict the intended shape. Scafolds are straight 
lines that can be easily drawn accurately. Scafolds help designers 
draw aesthetic shape strokes by providing designers with accurate 
visual references. Shape strokes pass through key points such as 
intersections between scafold lines. Without scafolds, creating 
globally consistent and accurate design drawings would be much 
more difcult. 

While 2D projections can communicate approximate ideas quickly, 
3D shapes are needed when communicating with stakeholders such 
as structural or fabrication engineers, to measure or manipulate 
the shape, or anytime additional viewpoints are needed. To cre-
ate 3D shapes, designers learn an entirely new skillset unrelated 
to sketching: polygonal modeling in CAD software. This discards 
the knowledge and experience industrial designers spend years 
mastering. 

We introduce ScafoldSketch, an approach that allows users to 
create accurate sketches in 3D (using a VR headset and controllers) 
by leveraging a particular technique from 2D industrial design 
drawing (Figure 1), efectively granting industrial designers new 
powers they already know how to use. The challenge with existing 
approaches to 3D sketching is the difculty humans have accurately 
drawing in space. Accuracy is signifcantly reduced compared to 
2D sketching [3, 7, 48, 50]. This may be due to depth perception or 
the additional complexity in the body’s motor plan, which must 
consider the extra free dimension not constrained by contact with 
a drawing surface. For example, it is easy to draw two intersecting 
straight lines in 2D but exceptionally difcult in 3D. Previous 3D 
sketching approaches either target “artistic” drawing with rough 
and disconnected strokes (Quill, TiltBrush, Gravity Sketch, [28, 32, 
43]) or focus on new tools and algorithms for beautifying, neatening, 
or auto-correcting strokes [2, 6, 11, 12, 17, 18, 25, 27, 31, 53]. To use 
these approaches, designers must learn new ways to draw or accept 
globally inconsistent 3D sketches. Design drawings (in 2D or 3D) are 
too complex for general approaches to algorithmic beautifcation 
or auto-correction (hereafter auto-correction) [23, 35, 37], which 
must determine which strokes are intentionally straight or curved; 
parallel, perpendicular, or otherwise; the same length; and intersect 
tangentially or otherwise. 

The key insight underpinning ScafoldSketch is that scafolds 
and shape strokes decompose design drawing into simpler prob-
lems, each amenable to algorithmic global auto-correct. Designers 
learn this decomposition as one of many techniques from indus-
trial design education. This decomposition was used for 2D-to-3D 

inference by Schmidt et al. [44]. We employ this decomposition 
for direct 3D drawing, where accuracy is the dominant challenge. 
When considering an entire 3D drawing at once, the scafold lines 
and shape strokes together are too complex for global algorithmic 
auto-correct. Separately, each stage leads to a highly constrained, 
solvable algorithmic auto-correct problem. Real-time algorithmic 
global auto-correct is tractable for 3D scafold lines, since they 
are straight lines with a small set of known inter-relationships. 
Given auto-corrected scafold lines, algorithmic auto-correct of 
shape strokes becomes tractable, since each shape stroke must pass 
through key points of the scafold. Accurate scafold lines also 
provide visual reference when designers draw 3D shape strokes, 
preventing compound errors. An example of the user input scafold 
lines and shape curves, and the output auto-corrected strokes, can 
be seen in Figure 1, which makes it clear that ScafoldSketch enables 
users to create accurate and expressive 3D drawings in VR with a 
particular design drawing style that can be part of many diferent 
artistic and professional workfows. 

2 RELATED WORK 
We consider previous work in the areas of direct 3D drawing and 
2D-to-3D drawing. 

Direct 3D Drawing. A variety of approaches have been proposed 
for drawing in 3D. Quill and TiltBrush are recent VR drawing 
systems for artistic 3D drawing. They do not perform auto-correct, 
and so output a set of disconnected, rough strokes. In contrast, 
our goal is to generate accurate curves in 3D for industrial design 
applications. Gravity Sketch is also a recent VR shape creation 
system targeting industrial design. Users can create freeform 3D 
strokes which are not algorithmically beautifed or manipulate 
traditional CAD primitives, such as Bézier control point positions 
in space. There is no algorithmic auto-correct beyond snapping to a 
grid or snapping control points to each other. In contrast, we create 
accurate 3D curves by auto-correcting a 3D analog of 2D design 
drawing practice. 

Schkolne et al. [43] introduced an early approach to in-air 3D 
shape creation with custom hardware that digitized a user’s hand 
pose or tool. The novelty of this system was the input hardware. 
They did not aim to correct inaccurate user input. Keefe et al. [25] 
proposed several interactions for drawing smoother or more con-
trollable individual strokes. These interactions do not consider 
global information, such as intersections and tangencies between 
strokes. In contrast, we auto-correct each drawn stroke with global 
information from all previously-drawn strokes. 

Kim et al. [27, 28] proposed techniques for creating freeform 
3D scafolds based on designers’ hands. In contrast, our approach 
does not support freeform scafolds. Instead, we target existing 
2D design drawing practices with the goal of creating accurate 3D 
drawings. 

Multiplanes [31] and CASSIE [53] snap curve endpoints to ex-
isting planes, curves, or grid points based on spatial proximity. 
Multiplanes displays context-sensitive guides (e.g., planes). This 
snapping has the efect of neatening the drawn curves, but it is 
limited to the particular supported snapping relationships. CASSIE 
[53] creates well-connected 3D curve networks as we do. Drawn 
curves are neatened via an optimization process that considers 
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planarity and snapping endpoints and tangents to other curves or a 
regular grid. CASSIE further automatically detects surface patches 
and lets users draw on them. We do not explore surfacing in Scaf-
foldSketch. In contrast, we explore accurate 3D curve drawing via 
a user-created scafolding structure. This results in curves that 
respect global relationships such as lengths and angles, allowing 
users to create, for example, symmetric shapes. Smart3DGuides 
[32] aimed to improve accuracy purely by displaying appropriate vi-
sual guides, without directly snapping or otherwise auto-correcting 
user input. In our approach, designers explicitly create their own 
scafold “guides” in a familiar and accurate manner based on their 
2D drawing experience, by drawing lines and placing tick marks. 
Because users create their own scafolds, ScafoldSketch is able to 
infer user intent more accurately. Arora et al. [2] and Drey et al. 
[12] allow users to specify how their tablet’s 2D surface maps to a 
3D surface. Users then draw more precise 2D strokes on the tablet 
surface. The strokes are projected into 3D with the specifed map. 
In contrast, ScafoldSketch users draw directly in 3D and rely on 
auto-correct to create accurate 3D strokes. This eliminates many 
mode switches. 

2D-to-3D Drawing. Many approaches considered the problem of 
lifting 2D sketched strokes into 3D. While these approaches do not 
require VR or 3D tracking equipment, 2D-to-3D lifting approaches 
must contend with the ambiguous nature of 2D projections of 3D 
forms. They require designers to learn new drawing approaches 
[5, 13, 24, 44], accommodate simplifying assumptions and limita-
tions [1, 19, 52], or spend time annotating existing drawings [16, 49]. 
The most closely related works to ours are by Schmidt et al. [44] 
and Gryaditskaya et al. [19], which lift industrial design drawings 
from 2D to 3D interactively or as a post-process, respectively. They 
both distinguish between straight scafold lines and smooth shape 
curves, with a primary focus on interpreting depth ambiguities such 
as accidental 2D intersections and perspective projections. Grya-
ditskaya et al. [19] aims to lift each individual stroke, no matter 
how roughly drawn, whereas Schmidt et al. [44] performs algorith-
mic auto-correct as we do. Our interface allows designers to draw 
directly in 3D. This avoids projection ambiguities but presents a 
diferent set of algorithmic auto-correct challenges. To auto-correct 
scafold lines, we must solve a problem common to many beau-
tifcation systems, fnding a non-conficting subset of satisfable 
constraints. Our iteratively re-weighted least squares (IRLS) ap-
proach to constraint satisfaction provides a simple, unifed solution 
to what is often solved via a complex decision tree [15]. 

3 INTERFACE 
The design of the ScafoldSketch interface is informed by established 
conventions of sketching for industrial design. 

3.1 Industrial Design Practice 
Industrial designers conventionally learn a particular approach 
to drawing 3D shapes in perspective [14, 20, 21, 26, 41] among 
other skills. This approach is based on drawing straight lines, often 
called construction or scafold lines, which make up a scafold for 
later curves depicting the shape of the 3D form (Figure 2). The 
approach is typically drawn free-hand. Construction lines include 
lines for establishing vanishing points for accurate perspective 

project. Construction lines also include scafold lines (following the 
taxonomy in Gryaditskaya et al. [20]). Like the scafolds used in the 
physical construction of a building, scafold lines typically form a 
set of interrelated lines which enclose or otherwise support drawing 
the lines and curves which depict the shape itself. Scafold lines are 
often parallel, perpendicular, intersecting, and co-planar. Scafold 
lines may share the same length, such as the opposite edges of a 
box. Other approaches to form creation, which may be preferred by 
some industrial designers, are out of scope for ScafoldSketch. We 
based our interface for accurate drawing in VR on this technique. 
This makes our interface immediately approachable by industrial 
designers who have learned to explore form development through 
design drawing. The 3D sketches ScafoldSketch creates could be 
seen as a fnal result (if the designer’s goal is an initial form or 
sketch) or as a step towards a rendering. ScafoldSketch creates 
similar output to other industrial-design-inspired 3D modeling 
approaches [44, 52, 53]. 

3.2 The ScafoldSketch Interface 
Our VR sketching environment ScafoldSketch is designed to trans-
late the existing 2D design drawing process into 3D. Therefore, we 
have exactly two modes corresponding to the two types of lines, 
scaffold and shape. We use diferent auto-correct algorithms in 
the diferent modes. Since we are mimicking a traditionally pen-
and-paper drawing process, our interface is minimalistic (Figure 2). 
The VR environment is white like paper with light grid lines visible 
on the walls. Our approach to auto-correct makes no assumptions 
regarding world-space axes. 

In scaffold mode, the VR controller creates an elastic line 
stretched between the controller trigger’s press and release (Fig-
ure 3a). After a scafold line is drawn, it is auto-corrected to more 
accurately align with other scafold lines (Figure 3b). Scafold lines 
are thin and gray, since they are drawn as light strokes in pen-and-
paper. By default, tick marks are shown at the start, end, and middle 
of a scafold line, which we call “keypoints.” Shape strokes begin, 
end, and pass through these keypoints. Users can add additional 
keypoints by drawing an extremely short scafold line across an 
existing scafold line. Designers often add keypoints when drawing, 
for example, a rounded corner. 

Shape strokes describe the intended form. We draw them as thick, 
black lines, since they are drawn as dark strokes in pen and paper. 
In shape mode, the VR controller creates a curve directly from 
the controller movements between the trigger’s press and release 
(Figure 3c). After a shape stroke is drawn, it is auto-corrected to 
be smooth while passing through and tangent to the scafold lines 
(Figure 3d). 

Besides the two drawing modes, our interface has buttons for 
undo/redo and zooming in/out. Zooming is important for user 
accuracy. A user’s accuracy in the physical world is limited by their 
physical abilities. By shrinking themselves, a user improves their 
accuracy in the virtual world. Since our auto-correct thresholds 
are based on physical measurements in user coordinates, zooming 
is necessary to, for example, prevent undesirable snapping. Our 
system auto-saves, though a feature exists to export the entire 
drawing history. Text labels annotate controller buttons whenever 
the user brings the controller close to their face. 
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Figure 2: Top row: Frames from a time lapse pen-and-paper industrial design drawing (“Product Design Sketching with 
construction lines” © Chris Wilson). Designers frst construct scafolding and then draw the shape curves on top. Bottom row: 
The same two-stage design drawing process executed in 3D with ScafoldSketch. The raw input and auto-corrected output for 
this example can be see in Figure 3. 
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Figure 3: A user’s raw input and auto-corrected output in 
ScafoldSketch. (a) The raw input scafold strokes. (b) The 
auto-corrected scafolding. (c) The raw input shape strokes. 
(d) The auto-corrected result. 

4 ALGORITHM 
As scafold and shape curves have diferent afordances, we use 
diferent algorithms for auto-correcting them. 

4.1 Auto-Correcting Scafolds 
Scafolds are composed of straight lines with a limited set of inter-
relationships [20, 21]. The lines may intersect, they may be parallel, 
perpendicular, or coplanar, and they may have the same length. 
The challenge is in disentangling which of the many possible re-
lationships are relevant to a newly drawn line (Figure 4). Previ-
ous approaches to auto-correcting lines and circles have relied on 
snapping, heuristic prioritization, or least squares formulations 
[22, 23, 35, 38, 52]. Snapping and heuristic prioritization are greedy 
approaches. They will exactly satisfy some constraints in the order 
considered, but fail in the presence of cycles or compatible con-
straints afecting the same vertex. This is common in our scenario, 
since scafolds support closed shapes. Traditional least squares solu-
tions, on the other hand, can satisfy constraints even in the presence 
of cycles, but compromise in the presence of conficting constraints, 
satisfying none. Since scafold lines are dense, cycles and confict-
ing constraints are common. We use iteratively re-weighted least 
squares (IRLS) to converge on a set of mutually satisfable con-
straints, discarding conficts. 

For an input scafold line � , we formulate each candidate con-
straint as a function � (�) that measures the squared deviation from 
constraint satisfaction. A line � is defned by start and end 3D points 
�� and �� which we call “keypoints” for constraint consideration. 
We also include the line midpoint �� as a keypoint. User-drawn tick 
marks (very short strokes crossing a line, indicating intermediate 
positions) are additional keypoints. The constraints we consider 
are defned for the line � relative to another scafold line � , keypoint 
� , or direction vector � . 

Point-point. To construct a closed scafold polygon, end points of 
adjacent scafold strokes must meet. We measure constraint satis-
faction with the point-to-point Euclidean distance (Fig. 4), squared. 
We include this constraint for each endpoint paired with all other 
existing scafold keypoints if the constraint function on the input 
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line evaluates to less than (5cm)2 in physical space. 

� (�� , �) = ∥�� − � ∥2 (1) 

Point-line. A line may abut another line but not at one of its ends. 
For this constraint, we compute the point-to-line distance (Fig. 4). 
This constraint is added for each endpoint of the input line if the 
point-line distance with each scafold line initially evaluates to less 
than (5cm)2. 

∥(�� − �� ) × (�� − �� )∥2 
� (�� , �) = (2)

∥�� − �� ∥2 

Perpendicular lines. Two lines may be perpendicular, particularly 
if the lines share an endpoint or otherwise abut (Fig. 4), which is 
measured by the inner product of the line and a scafold direction 
� . The constraint energy is zero when it is satisfed. The threshold 
for inclusion is equivalent to 10◦. 

� (�, �) = ((�� − �� ) · �)2 (3) 

Parallel direction. A line may also be parallel to an existing scaf-
fold line, or to the vertical axis (Fig. 4), which is measured as one 
minus the inner product of the line and a direction. The constraint 
energy is also zero when it is satisfed. The threshold for inclusion 
is equivalent to 10◦. 

� (�, �) = (1 − | (�� − �� ) · � |)2 (4) 

Equal length. Construction of many polyhedra requires edges 
of equal length (Fig. 4), so we compute the ratio of the new line’s 
length to existing scafold lines. The threshold for inclusion is 25%. � �2∥�� − �� ∥ 

� (�, �) = − 1 (5)∥�� − �� ∥ 
For a new input scafold line, we compute the value of all pos-

sible constraints that may be applied with respect to all existing 
keypoints, directions, and lines. For each possible constraint, if its 
value is below a threshold, we include it in our list of constraints. 
Naively adding all constraint terms together with equal weights 
�� = 1 leads to a least squares formulation:∑ 

min ���� (�) (6) 
� 

Problematic solutions occur with any fxed choice of weights, since 
optimization will converge to a non-zero balance among conficting 
constraints (e.g. two distinct point-point constraints for a single 
endpoint). This is unsatisfying for the user, as a compromise among 
constraints is perceived as no constraint being satisfed. In contrast, 
our IRLS formulation repeatedly re-solves the problem with weights 
updated after each iteration: 

1 
�� = (7)

� + �� (�)
This induces a positive feedback loop in which more satisfable 
constraints are given larger and larger weights, ultimately assigning 
binary weights approaching either ∞ (satisfed) or 0 (discarded) for 
each constraint. We favor point-point constraints by setting their 
initial weight to �� = 100, and all other initial weights to 1. In our 
experiments, we have found that this IRLS auto-correct approach 
converges after 2–6 iterations and is capable of exactly satisfying 
constraints and intelligently resolving conficts. In a complex scene 
(∼45 scafold lines), this takes 0.2 seconds for a scafold line with few 

constraints and 1.1 seconds for a scafold line with many constraints. 
The end result of this auto-correct is accurate scafolds with no 
global distortion, suitable for shape stroke auto-correct (Figures 1, 
2, 3, 6, 7, and 10). 

4.2 Auto-Correcting Shape Strokes 
The shape strokes that defne a 3D form appear complex and non-
planar yet smooth and fair. In the absence of scafold lines, they 
are challenging to draw accurately, even in 2D. In ScafoldSketch, 
designers frst draw the scafolds they are accustomed to creating 
directly in 3D. Then designers draw 3D shape strokes and we auto-
correct each curve using the scafolds as constraints. Our shape 
strokes have two goals: to respect the scafold constraints, and to be 
as beautiful as possible. To satisfy the frst goal, we use the user’s 
input 3D curve to select scafold keypoints and tangents for the 
curve construction, ensuring that the auto-corrected curve respects 
the user’s intended shape. There are many possible curves that 
satisfy these constraints. To satisfy our second goal, we perform an 
optimization on the remaining curve degrees of freedom to achieve 
a beautiful 3D shape. We use minimum variation of curvature (MVC) 
curves [34], whose solution space includes French Curves (Euler 
spirals or clothoids) used in design [9, 33, 40, 47] (but may not 
be identical depending on boundary conditions [30]). The results 
are aesthetically pleasing curves that accurately match the user’s 
intended design. Example input and auto-corrected shape strokes 
can be seen in Figure 5. 

4.2.1 Selecting scafold constraints. From the user input shape 
stroke, we select a sequence of keypoints and tangent directions 
to form the basis of our 3D curve. We model our 3D curves as 
piecewise cubic Bézier splines. We sample the input stroke uni-
formly in arclength (1 cm) as � = {�1, �2, . . . �� }. For each �� we 
fnd the nearest scafold keypoint within a distance threshold (3 
cm defned in the user’s physical coordinates, so zooming can be 
used to adjust the results), yielding a sequence � = {�1, �2, . . . �� }. 
It is likely that the same keypoint will be selected multiple times by 
consecutive shape points that are all within the distance threshold, 
so we remove repeated elements from � . 

If the input shape curve is nearly tangent to a scafold at a key-
point, we constrain the curve to have that tangent direction at that 
keypoint. The input curve’s tangent is computed with forward fnite 

��+1 −�� diferencing, � = . We compute the smallest angle between ∥��+1 −�� ∥ 
the input curve tangent and any scafold line passing through the 
keypoint. If the angle is less than a threshold of 25◦, we constrain 
the curve to have the scafold line’s tangent. If the input curve is 
not nearly tangent (less than 25◦) to a scafold line, then the local 
average direction of the input curve is used instead. The result is 
a sequence � = {�1, �2, . . . �� } of tangent directions, one for each 
keypoint in � . 

The points � and directions � defne our piecewise Bézier spline. 
Each pair of adjacent �� , ��+1 are the endpoints of a Bézier segment, 
and �� , −��+1 are the tangent directions. For each Bézier segment, 
there are two remaining degrees of freedom: the magnitudes ��,1 
and ��,2 of the tangent control points, defned as �� +��,1�� and ��+1 − 
��,2��+1. This is the basis of our minimum variation of curvature 
optimization. 



UIST ’21, October 10–14, 2021, Virtual Event, USA Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold 

l

p
point-point

l

k
point-line

l

d
perpendicular

θ
l

d
parallel

θ
l

k
equal length

Figure 4: A newly drawn scafold line � is shown in blue and a pre-existing scafold line is shown in black. The point-point 
constraint measures the distance from an endpoint of � to a keypoint �. The point-line constraint measures the distance from 
an endpoint of � to a previous scafold line � . The perpendicular constraint measures the angle deviation from 90◦ between � 
and a previous scafold line direction � . The parallel constraint measures the angle deviation between � and a previous scafold 
line direction � . The equal length constraint measures the ratio between the length of � and a previous scafold line � . 
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Figure 5: Top row: Input shape strokes. Bottom row: Auto-corrected output. All examples use the same square scafold. All 
examples except for the rounded square are a single shape stroke. The auto-corrected results exhibit diferent position and 
tangent constraints and the curves achievable by MVC optimization. 

4.2.2 Shape curve optimization. Piecewise Bézier curves with min-
imum variation of curvature (MVC) will form circular arcs when 
the endpoints and tangent directions allow and approximate French 
curves (clothoids or Euler spirals) when not [30]. MVC was intro-
duced as a technique for creating aesthetically pleasing curves and 
surfaces that interpolate user constraints in industrial design appli-
cations [34]. The shape curves in industrial design sketches rarely 
subtend arcs of greater than 90 degrees in between keypoints, so 
Bézier segments are sufciently expressive and efcient to optimize 
due to their small number of degrees-of-freedom. 

We compute the variation of curvature as the sum of the Menger 
curvature [51] at sample points along the curve. From our piecewise 
Bézier defned by � and � , we uniformly sample in arclength points 
along it as � = {�1, �2, . . . �� }, ensuring each Bézier segment has at 
least one sample. The curvature is computed as 

1 4�� 
� (�� ) = = (8)

�� ∥��−1 − �� ∥ ∥�� − ��+1 ∥ ∥��+1 − ��−1 ∥ 
where �� is the radius of the circle subtended by ��−1, �� , ��+1 and 
�� is the area of the triangle ��−1, �� , ��+1. The objective of our 
optimization is the total curvature variation:∑ 

2(�� −  ��+1) (9) 

The degrees of freedom of our optimization are � = 
{(�1,1, �1,2), (�2,1, �2,2), . . . (��−1,1, ��−1,2)}, the magnitudes of the 
tangents of each Bézier segment. There are 2� − 2 unknowns. � 
is initialized with values that ensure no cusps exist: ��,1 = ��,2 = 

1 
3 ∥�� − ��+1 ∥. We minimize Equation 9 using SciPy’s BFGS imple-
mentation. This takes around 50 milliseconds for simple curves 
like a circle and approximately 1 second for very complex curves 
involving 9–10 keypoints. 

Users sometimes wish to draw perfectly straight shape strokes 
between two keypoints not aligned with any scafold tangents. 
In these cases, our optimization may produce a curve with some 
undesirable curvature because the detected start and end tangents 
may not be co-linear. We detect approximately straight input and 
directly output a perfectly straight line between the frst and last 
keypoint. We use principal component analysis (PCA) to fnd the 
best-ftting straight line to the input point samples. We take the 
segment of the PCA line that bounds the projection of all input point 
samples. We use the PCA line if the maximum distance between 
the input points and the PCA line is less than 8% of the PCA line 
length and if the PCA line length is within 10% of the arc length of 
the input curve. 

5 EVALUATION 
To evaluate our approach, we implemented a usable ScafoldSketch 
application for the Oculus Quest. The interface is built on THREE.js 
and WebXR, while the auto-correct engine is a Python service con-
nected to the interface via a WebSocket. Our system is deployable 
to users’ home VR setups, making it easy for industrial designers 
to experiment with 3D sketching. Figure 6 shows a professional 

https://THREE.js
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Figure 6: A user in headset using ScafoldSketch to create 
a cofee mug with spoon. ScafoldSketch does not impose 
global axis alignment. The spoon scafold and mug scafolds 
are aligned to diferent axes. 

industrial designer using ScafoldSketch to draw a cofee mug and 
spoon. 

We tested ScafoldSketch to produce a variety of diferent types 
of abstract and product designs with diferent shapes including 
straight lines and right angles, circular arcs, and planar and non-
planar clothoid curves. Some exemplary results can be seen in 
Figure 7. Compared to recent previous works, ScafoldSketch is 
able to demonstrate both accurate and well-aligned 3D shapes 
including parallel and perpendicular lines of equal length, while 
also supporting more organic and curved shapes characteristic of 
freeform 3D painting. 

We also conducted a user study to evaluate the usability of Scaf-
foldSketch. 

5.1 Methodology 
Due to COVID-19, we performed a remote user study and relied 
on fnding industrial designers who had their own VR headsets 
(or access to one). We recruited six participants, P1–P6, (ages 20– 
22, three women, three men) all students of university industrial 
design programs. Three participants rated themselves as using VR 
less than one hour per week, two said 1-3 hours per week, and 
one more than 3 hours per week. Two participants had less than 
one year experience with product design sketching, while four had 
1–5 years experience. All participants had normal or corrected-to-
normal stereo vision. Remuneration was a $50 gift card. The study 
took approximately 1.5 hours to complete. 

Because we conducted our study remotely, we relied on the hard-
ware and environment of participants’ homes. Four participants 
used an Oculus Quest, P2 used an Oculus Quest 2, and P6 used an 
Oculus Rift. All participants used Windows computers. To conduct 
the study, participants joined a video call with the practitioner and 
cast their VR headset to the Google Chrome browser on the com-
puter, which was shared via the video call. Because of technical 
difculties with the video call, P6 was unable to complete the study. 
Their results are omitted from the remainder of this discussion. 

Each participant used ScafoldSketch in two conditions, with and 
without auto-correct. Previous work has established that free-hand 
3D drawing in VR is low accuracy [3, 53]. Yet industrial designers are 
able to create highly accurate free-hand 2D drawings using scafold 
lines without auto-correct. Our without auto-correct condition tests 

if scafold lines themselves are enough to improve VR drawing. 
Our with auto-correct condition allows us to see how much of an 
improvement auto-correct can provide. Conditions were balanced: 
half of the participants started with auto-correct, and half started 
without auto-correct. 

Our protocol was approved by an institutional review board. 
Participants all provided verbal informed consent at the start of 
the study. In advance of the study, users were given instructions 
describing ScafoldSketch and how to prepare their computers. We 
started the study by reviewing a two minute video tutorial showing 
the creation of a cylinder with rounded rectangular faces, and 
then asked the user to reproduce the tutorial object (Figure 8) to 
familiarize themselves with the system (max ten minutes). The user 
then performed a directed task given a prompt. We showed the 
user an industrial design sketch of a trash can outside the headset 
(Figure 9). The user was asked to draw a trash can in 3D inspired by 
the prompt using ScafoldSketch for ten minutes. (The user was not 
asked to reproduce the exact prompt, and the prompt was not visible 
during the task.) The user was then asked to create a drawing of 
their own for another ten minutes. After the open-ended task, users 
flled out a questionnaire. Then we repeated these tasks (tutorial, 
directed, open-ended, questionnaire) for the second condition (with 
or without auto-correct). Finally, participants flled out a post-study 
questionnaire. Participants were given breaks between tasks. We did 
not strictly enforce the ten minute time limit if the user requested 
to spend more time on the task. 

5.2 Results 
The 3D drawings of participants P1–P5 for the directed and open 
tasks, with and without auto-correct, can be seen in Figure 10. 
Users chose a range of objects for the open-ended task, including 
a shoe, a chair, and a microwave. They also made some creative 
interpretations of the trash can for the directed task. (The prompt 
was not visible during the task.) 

The data from our questionnaires are presented in Figures 11 and 
12. Eight of the questions, Q1–Q8, were repeated for each condition. 
They are presented together for comparison in Figure 11. We mea-
sured statistical signifcance with a two-sample non-parametric 
permutation test [39]. Uncorrected �-values are reported in the 
fgure. Four questions, Q9–Q12, were specifcally about the auto-
correct condition and so do not have paired comparisons. They 
are presented in Figure 12. Their �-values were computed with a 
one-sample non-parametric permutation test against the theoret-
ical median response of ‘neutral’. A post-hoc Holm-Sidak analy-
sis [45] across all questions found none of the individual compar-
isons present sufcient evidence to reject the null hypothesis at 
the � < .05 threshold. Aggregating responses across all questions 
reveals a strong efect in favor of auto-correct using the same tests 
(� = 0.0121 for Q1–Q8; � = 0.0001 for Q9–Q12). 

6 DISCUSSION 
Despite some individually promising results, our study is not pow-
erful enough to fnd evidence of a signifcant efect in our individual 
questions. We believe this is due to the small number of participants, 
owing to the difculty of recruiting users with the necessary in-
dustrial design skill and access to VR hardware during a pandemic. 
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Figure 7: Results created by expert users in our system, rendered with Polyscope [46]. Drawn objects include a kitchen range, a 
lamp, an abstract sculpture, a fange, a bowl, a hair dryer, and a complex structure. Scafold lines are thin pale yellow and shape 
strokes are thick blue. 

Figure 8: A study participant’s tutorial drawing. 

Figure 9: The prompt for the directed task (from Gryadit-
skaya et al. [19]). 

Nevertheless, we fnd the questionnaire results encouraging and 
the output drawings display consistent visible diferences. Figures 7 
and 10 clearly show that auto-correct has a dramatic efect on the 
achieved quality of the 3D designs. Participants answered unani-
mously that they strongly agree that “the scafolds helped [them] 

draw more accurately” with auto-correct (Q5). Sentiment was unan-
imously positive-to-neutral for all questions in the auto-correct 
condition. Further evidence appears in participants’ comments. 

Participants unanimously agreed that ScafoldSketch is easy to 
learn to use (Q1). P1 commented, “The software was very intuitive. 
The UI was very easy to understand, and it wasn’t confusing to 
understand how to use the software.” P5, who did not have previous 
VR experience, remarked, “The 3D drawing tool was easy to use.” 
This seems consistent with the consensus that VR drawing tools 
such as Quill and TiltBrush are easy to learn in a similar way to 
traditional media drawing. The two stage approach of drawing 
scafolds and shape curves separately is an additional complexity 
of ScafoldSketch, but the participants’ industrial design experience 
likely made it easier for them to learn. 

Participants drew comparisons to a prominent commercial com-
petitor, Gravity Sketch, in their comments. While P6 did not com-
plete the study, they did provide comments, including, “The pro-
gram is great, far more accurate than Gravity Sketch, feels similar 
to using a pencil with a ruler and a sharpie, because of that there it 
feels a lot more accurate than other sketch programs in VR,” and 
P2 said, “Scafolding would help a ton in programs such as Gravity 
Sketch.” 

The most closely related recent work to ours is the recent CASSIE 
system [53]. Their results embody a free fowing and organic ex-
pressive style, but have few straight lines or planar curves or other 
geometric constraints. In contrast, our results include both sweep-
ing non-planar curves as well as straight and rounded lines that 
satisfy precise relationships. 

While participants unanimously agreed that “auto-correct helped 
[them] draw more accurately” (Q9), there was less general agree-
ment that auto-correct correctly interpreted participants’ intended 
scafold and shape strokes (Q10 and Q11). We measured the number 
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Figure 10: The results of our user study, from all participants (P1–P5), both tasks (directed and open-ended), and both conditions 
(without and with auto-correct). Scafold lines are thin pale yellow and shape strokes are thick blue. The prompt for the directed 
task can be seen in Figure 9. 
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of times participants used the undo feature during a given session 
and found that the median number of undos per session in the 
without auto-correct condition was 16 versus 29 in the with auto-
correct condition. While we tuned the auto-correct thresholds to 
our own preferences, we observed participants sometimes strug-
gling with them. This suggests that calibration or personalization 
of thresholds per-user may improve auto-correct performance, and 
that more sustained use may help users become accustomed to the 
thresholds. Participants sometimes struggled with the zoom func-
tionality, which could have provided a solution to some of these 
problems. 

Two users were neutral regarding whether their auto-correct 
drawings more accurately refected their intent than without auto-
correct (Q12). P3 elaborated that, “when just used for sketching and 
ideating, without auto correct does prove to be a valuable ideation 
tool with the ability to visualize your idea in space quickly,” and P5 
said “I didn’t like it that the drawings would be limiting to make 
when I wanted to create details, so in that aspect I really liked using 
the drawing tools because there was no limit.” It is a limitation 
of ScafoldSketch that we do not currently support turning auto-
correct on and of during a drawing session. In 2D design drawing, 
once the overall form of a shape is defned, designers often add 
fnishing touches such as shading or coloring regions or drawing 
fne details on or near the implied surface. The user requests support 
the fndings of CASSIE [53] that even when using armatures, users 
still chose to add some freehand strokes for details or looser, more 
organic objects. 

Overall, we are heartened to fnd that all users agreed they en-
joyed using ScafoldSketch (Q6) and want to use it in the future 
for their industrial design needs (Q7). Comments refect this sen-
timent: P1 said, “I defnitely plan on using this program once it 
becomes available,” and P2, “Great stuf, would love to see this come 
to market in the future for me to utilize!” 

6.1 Refections 
Our primary goal in designing ScafoldSketch was to create accu-
rate 3D strokes, a well-known challenge when drawing in 3D, by 
borrowing from conventional industrial design practices. Our user 
study baseline was not a comparison to raw input. Rather, it was 
a comparison to scafolds and shape strokes without auto-correct. 
2D designers do not have auto-correct but are able to make high-
quality drawings with scafolds. Our hypothesis was that scafolds 
alone would be sufcient to improve VR drawing over the raw input 
“true” baseline. We found that wasn’t the case. We believe this is be-
cause the visual reference provided by scafold lines is insufcient 
to overcome the depth ambiguity and more complex physical mo-
tor program. We didn’t include a comparison to strictly raw input, 
since previous work has established that raw input is problemati-
cally imprecise [3, 7, 48, 50]. We determined that a comparison to 
Gravity Sketch or CASSIE [53], for example, would distract from 
the central question we wanted to answer, because those tools have 
diferent afordances and produce output that difers from ours in 
important ways. Users may choose to use all three tools for comple-
mentary reasons. Our smoothing algorithm was designed around 
our specifc set of constraints. Any curve smoothing algorithm that 

respects our constraints would probably also generate aesthetically 
pleasing curves and could be used instead. 

When and how much algorithmic auto-correct or beautifcation 
to apply is a classic problem. This often boils down to a question of 
thresholds and user-facing controls to enable/disable or select the 
degree of desired auto-correction. Overly aggressive auto-correct 
undesirably modifes user input. Overly conservative auto-correct 
disappoints users by failing to improve their input. 

Our thresholds were determined empirically. They often work 
well, but we believe threshold personalization is an interesting 
avenue for future work. We implemented zoom functionality to 
allow for more precise drawing than our thresholds allow. We 
believe our users generally overlooked this functionality. 

Auto-correct can impede creativity. We believe this to be true for 
all systems in which errors of interpretation [4] may occur. In our 
“without auto-correct” study scenario, users sometimes drew details 
that could not have been drawn easily in the “with auto-correct” 
scenario. They would have required tedious scafold creation, since 
our shape curves must be attached to scafolds. They cannot have 
details far from scafold key points. We could address such curves 
in the future with new relationships, freeform or detail curve tools, 
or simply allowing users to toggle auto-correct. 

In 2D, high quality design drawings can be created without 
auto-correct by drawing scafolds. Very quick sketches or very 
experienced sketchers may use few scafolds. In 3D, for the clean 
line drawing style of our results, we think auto-correct is necessary 
since it is so much harder to draw accurate smooth curves. Scafolds 
allow us to divide-and-conquer the auto-correct problem. 

ScafoldSketch is designed to enable drawing accurate 3D curves 
in VR. We use design drawing to achieve that goal. The 3D drawings 
that can be created are more informative than their 2D analog, since 
they can be rotated. ScafoldSketch can be used in industrial design 
processes. However, ScafoldSketch does not support tools that 
would be needed for more sophisticated 2D drawings or renderings 
often created in industrial design pipelines, such as shading or 
details. ScafoldSketch also does not visualize inferred constraints 
or allow users to directly specify properties such as lengths, angles, 
or congruence. 

6.2 Future Work 
There are exciting opportunities for continuing to improve VR 
drawing tools. 

Depth Accuracy. Depth perception may be a source of inaccuracy 
in 3D sketching [3, 7, 48, 50]. Depth perception biases are known 
to be individual [29] and related to the bas-relief ambiguity [8]. 
We conducted a preliminary experiment (� = 3) to assess the 
importance of depth inaccuracy in our design drawing scenario. 
In perspective, depth estimation errors would occur along a ray 
from the eye to a point, not in the “look” direction perpendicular to 
the image plane. For this reason, we did not detect systematic bias 
along the look direction for an axis-aligned box-drawing task. In a 
second experiment, participants drew lines between random points 
on the surface of a sphere and its center. We analyzed the center 
endpoints with principal component analysis. Two participants did 
not exhibit a depth bias while a third did. This third participant 
has anomalous stereo vision. We plan to explore an optional error 
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Figure 11: Visualization of the paired question responses. The questions are provided on the left. For each question there are 
two stacked bars, for the without and with auto-correct conditions. Each bar has fve responses from a fve point Likert scale. 
The uncorrected �-value comparing each question pair is on the right. 
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Q11: Auto-correct interpreted my intended shape strokes correctly.
Q10: Auto-correct interpreted my intended scaffold strokes correctly.
Q9: Auto-correct helped me draw more accurately.
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Q12: The drawings I made with auto-correct more accurately reflect 
my intent than the drawings I made without auto-correct.

p=0.4433
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p=0.0490
p=0.0088

Figure 12: Visualization of the unpaired question responses. The questions are provided on the left. Each question was only 
asked of the with auto-correct condition. Each bar has fve responses from a fve-point Likert scale. The uncorrected �-value 
comparing each question to a uniform neutral distribution is on the right. 

estimation task for users to personalize the parameters of our auto-
correct algorithm based on their psychophysical characteristics, 
and to incorporate view-dependence into our constraint selection 
and optimization steps. 

Holistic Sketching. Our participants commented that they wished 
to include both auto-corrected strokes and free-form strokes in 
their compositions, to support more drawing styles. When show-
ing ScafoldSketch to potential users, one of the most common 
requests is that it also includes some form of surfacing, which 
has been explored in previous work [36, 42, 53]. Surfaces can also 
support fnishing details such as shading or decals, which may be 
supported by free-form strokes, surface-based edits, and repeated 
over-sketching [5, 10, 28]. In particular, supporting shading and 
detail strokes from industrial design practice would allow the cre-
ation of product design “renders” in 3D. The combination of all 
these techniques into a single VR drawing system could be greater 
than the sum of its parts and move VR drawing beyond single-use 
tools and into the broader arena of general purpose 3D ideation and 
creation experiences with applications across computer graphics 
including fne art, concept art and storyboarding, 3D modeling, 
CAD, architecture, fabrication, and more. 

7 CONCLUSION 
ScafoldSketch is a natural approach for industrial designers to 
transfer their 2D design drawing skills into 3D. The nature of design 
drawing allows ScafoldSketch to auto-correct scafold and shape 
strokes separately with algorithms targeting the unique properties 
of each, resulting in aesthetic and accurate 3D drawings. Industrial 
designers easily learned to use ScafoldSketch. There is a tradeof 
between freedom and power for any interface which interprets 
and improves user input. It is inherently inhibiting for users to 
worry about a computer mis-interpreting their input. Our user 
study participants fnd that ScafoldSketch makes a worthwhile 
tradeof. 
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