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Abstract

Shape similarity is a fundamental problem in geometry processing, enabling applications such as surface correspondence, segmenta-
tion, and edit propagation. For example, a user may paint a stroke on one finger of a model and desire the edit to propagate to all
fingers. Automatic approaches have difficulty matching user expectations, either due to an algorithm’s inability to guess the scale at
which the user is intending to edit or due to underlying deficiencies in the similarity metric (e.g., semantic information not present in
the geometry).

We propose an approach to interactively design self-similarity maps. We investigate two primitive operations, useful in a variety of
scenarios: region and curve similarity. Users select example similar and dissimilar regions. Starting with an automatically generated
multi-scale shape signature, our approach solves for a scale parameter and thresholds that group the example regions as specified. We
propose a new Smooth Shape Diameter Signature (SSDS) as a more efficient alternative to the Heat or Wave Kernel Signature. If
no such parameters can be found, our approach modifies the shape signature itself. Given a curve drawn on the surface, we perform
hybrid discrete/continuous optimization to find similar curves elsewhere.

We apply our approach for interactive editing scenarios: propagating mesh geometry, patterns duplication, and segmentation.
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Figure 1: Our Smooth Shape Diameter Signature (SSDS) visualized on the sea
monster model [1].

1. Introduction

Shape similarity is a well-studied, fundamental problem in ge-
ometry processing. Its importance stems from the necessity of
establishing comparative surface metrics to drive a variety of
mesh processing algorithms, such as edit propagation, attribute
transfer, search, correspondence, and segmentation [2]. Many
similarity approaches are based on computing and comparing
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point-wise shape “signatures” or feature descriptors. These sig-
natures may be based on intrinsic or extrinsic properties on the
mesh. Over the last decade, a popular vein of signatures emerged
which offer a multi-scale view of the meshes they’re defined
upon, commonly through some scale-parameterizable approxi-
mation of a physical phenomenon. Many of these signatures in-
volve the spectrum of the Laplace-Beltrami operator [3, 4]. Once
proposed, it is often left to future work to create a framework to
best leverage the specific properties of each class of these signa-
tures.

Often overlooked is how these shape signatures can be interac-
tively controlled for applications such as mesh segmentation and
edit transfer at application-appropriate scales. Often, the scale
best suited to a user’s desired correspondence cannot be auto-
matically determined. This is due to either an algorithm’s inabil-
ity to guess the scale at which the user is intending to edit or to
underlying deficiencies in the automatic similarity metric (e.g.,
semantic information is not present in the geometry).

In this work, we focus on the interactive design of self-
similarity maps, or finding self-similar regions on a single mani-
fold mesh. We base our self-similarity maps on multi-scale shape
signatures that define a scale-parameterized signature value at
each vertex, thereby capturing local information when desirable
or neglecting their contribution when not. We investigate two
operations, propagating selected surface regions and hand drawn
surface curves.

Our contributions are:

• An approach to allow users to interactively obtain desired
self-similarity maps by automatically finding scale param-
eters and signature thresholds—and modifying the under-
lying shape signature when necessary. Our interactive step
is intuitive since the user merely labels areas they consider
similar and, optionally, dissimilar. We provide immedi-
ate visual feedback, so the user can provide minimal input,
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Figure 2: An illustration of geometry propagation using our curve propagation: (Left to right) (1) A single ring is drawn on a finger of the hand; (2) Additional ring
placements are suggested; (3) The ring placements are exported to Blender; (4) Complex geometry (ring pops) are placed and aligned according to the exported curves
(manually, as an illustrative application).

stopping when satisfied with the displayed result. Exception
perturbations are employed to successfully establish thresh-
olds even when there is no scale which brings user labeling
into agreement. These established relationships between
mesh regions are made part of any subsequent shape sig-
nature query, including generating other similarity maps on
the same mesh.

• The Smooth Shape Diameter Signature (SSDS). While our
approach for choosing shape signature thresholds is agnos-
tic to a large class of shape signatures, the spectral sig-
natures available in the literature have prohibitive compu-
tational requirements. We propose a signature based on
smoothing the Shape Diameter Function [5] as an alterna-
tive informative similarity metric with significantly better
time complexity.

• A method for self-similar curve propagation based on
tangent-space curve unrolling for distortion-free surface pa-
rameterization.

We show the effectiveness of our method in a set of edit prop-
agation and detail synthesis routines.

2. Related Work

Edit Propagation.. The most closely related works to ours focus
on edit propagation. Zelinka et al. [6] use geodesic fans to com-
pute surface similarity. They show edit propagation with a simple
user-defined α threshold as a means to determine which vertices
on the model are impacted by the edit of a “similar enough” mesh
vertex. In contrast, we provide a robust automatic method for
determining parameters matching user intent and the ability to
propagate curve features as well as similar regions. SimSelect [1]
presented approaches for propagating surface selections. Their
approach is based on isolines of a harmonic fields. We focus
on largely orthogonal tasks: selecting parameters and thresholds
for multi-scale signature functions and propagating open curves.
Peng et al. [7] presented an approach for “autocompleting” 3D
curves drawn on the surface of an object. However, their ap-
proach is based on analyzing a set of strokes with respect to each
other, not on surface properties. Mitra et al. [8] registers similar-
ities in a transformation space, propagating alignments to spatial
geometry to further refine a varying scale of symmetries.

Shape Signatures.. Our work centers largely around interpret-
ing, comparing, and manipulating shape signature values at ver-
tices in a mesh. Rustamov [9] uses d2 distributions to character-
ize the Global Point Signature values across a mesh for model-
to-model comparison, showing a discernible difference between
a variety of different models, while the same model with major
and minor deformations would cluster together under the metric.
Sun et al. [10] (and, simultaneously, Gȩbal et al. [11]) address
multi-scale matching with the Heat Kernel Signature, side step-
ping the issue of rapid convergence at large time values t, by uni-
formly sampling values over the logarithmic scaled temporal do-
main of the signature, taking the L2-norm of the resultant vectors
as a dissimilarity metric. Ovsjanikov et al. [12] follow-up on this
work by describing a technique for point correspondence prop-
agation and symmetry detection by identifying and registering a
small number local maxima points of the Heat Kernel Signature
within and across whole and partial models. Dey et al. [13] also
follow this maxima registration approach, but with a focus on
incomplete model matching, and with an added step of merging
maxima regions down to a total feature count κ. Aubry et al. [14]
explores energy rather than temporal intervals with a Wave Ker-
nel Signature; this, too, creates a feature vector of logarithmic
scaled energies and computing the L2-norm of these feature vec-
tors between points to determine matching. These works tend
to focus on the single smallest dissimilarity when ascertaining
a match, with little being said about the range of dissimilarity
or how to discern “similar enough” clusterings. We provide this
determination through our proposed interactive method, which
is agnostic to the choice of scale-varying shape signature. We
prefer a signature based on smoothing the Shape Diameter Func-
tion [5], which can be computed much more efficiently.

Gal et al.[15] also establish a framework for determining sim-
ilarity between mesh regions for a variety of applications, in-
cluding alignment and symmetry detection. However, they ex-
plore self-similarity using a purely geometric definition of what
makes two parts of a mesh similar. Our approach consider simi-
larity within the context of a creative process, where purely geo-
metric definitions may be incompatible with user intention, per-
haps resulting from semantic information known only to the user.
Our framework allows users to edit self-similarity through inter-
action; we support various single-parameter signatures (SSDS,
HKS, WKS, etc.).

Mesh Segmentation.. The goal of a signature thresholding
scheme is the ability to discern one region from another across
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a mesh. There exist a selection of state-of-the-art methods that
will deliver segmentations based on metrics ranging from surface
curvature [16] to volume uniformity [17]. However, user studies
have shown that none of them accurately emulate the segmenta-
tion choices of a human user across various classes of shapes and
models [18, 19], or unable to adapt to unusual user segmentation
desires [20]. We address this issue by opting for semi-interactive
segmentation methods that rely on some sort of face/vertex seed-
ing or initial guess, supplying the necessary selections through
our signature thresholds applied to the surface. To that end, we
seek to extend interactive segmentation algorithms by replacing
a substantial portion of the user-driven element with feedback
from our signature thresholds established from a small set of user
guidance. Recent work in the same vein has turned to seeding the
mesh with a smattering of user or random selections and grow-
ing component regions from those initial guesses. Lai et al. [21]
do random seeding to initialize random walks in a probabilis-
tic search for segment edges. In a survey of mesh segmentation
methods, Shamir [22] surveys a number of interactive segmenta-
tion techniques largely centered around finding optimal cuts from
user suggestion strokes [23, 24]. Zöckler et al. [25] outline a
method where interactive user segmentation and selection of fea-
ture points are used to drive a patch-wise parameterization and
subsequent geometric synthesis routine which morphs models.
However, their method relies heavily on the user to establish cor-
respondences and split the mesh into reasonable components. We
find the most natural interactive segmentation method to mod-
ify for our purposes is that proposed in Surfacing by Numbers
[26], wherein a user indicates by surface selection two distinct
areas of the mesh, and the segmentation is solved as a min-cut
problem between sources and sinks defined by the labeled user
strokes. We define each connected cluster within our threshold
as attached to source nodes, and define segments by the compo-
nents disconnected by the min-cut, which is further detailed in
Section 6.1.

Curves on Surfaces.. Central to our list of applications is the ma-
nipulation of direct-on-mesh drawn curves which can be freely
and inexpensively transformed in terms of a lower-dimensional
surface parameterization to yield intuitive higher-dimensional
results. Luckily, mesh surface 2D parameterization is a well-
trodden field with a variety of novel methods readily available
either for direct use or inspiration. As it is important to pre-
serve the geodesic fidelity of a surface-drawn curve, we chose
to focus on parameterizations that either severely reduced or en-
tirely eliminated triangle distortion, even if that meant sacrificing
global injectivity. We were also only interested in high fidelity of
parameterizations local to the drawn curve. Subsequently, prior
works such as discrete exponential maps [27, 28] and bounded-
distortion piece-wise mesh parameterization [29] stood as the
most promising foundations from which to work. Within this
context, our lower-dimensional curve operations most closely re-
semble snakes on surfaces (or active contours) [30], however our
transformations always result in a curve whose discretized repre-
sentation is directly on the 3D surface, and does not require any
sort of smoothness energy minimization to maintain this guar-
antee. We also generalize a curve’s minimizable energy across
a class of permissive shape signatures. Our edit propagation
method is distinct from ones similar to Pauly et al. [31] in that
we are not constrained to subgroups of symmetries by construc-
tion, allowing for more versatility in application. Furthermore,
because we do not rely on a formal learning process, we over-
come limitations like those present in Digne et al. [32], whereby
an infrequent feature would not be represented in the shape dic-

Figure 3: The Heat Kernel Signature visualized on the (a) Stanford Bunny and
(b) Trim-Star at arbitrary temporal scales.

tionary. Finally, we side-step assumptions of regularity in the
underlying geometry [33], allowing similarities to be established
beyond purely geometric considerations.

3. Overview

Problem Statement. Given a mesh and either a labeled region or
a user-drawn curve on the mesh surface, we seek to propagate the
user’s creative intent to the remainder of the mesh. We also seek
to learn from user labels of these indicated regions of interest to
improve the quality of future edit suggestions.

Example scenario A. The user wishes to edit all fingers but not
toes. When the user selects one finger, all fingers and toes be-
come selected due to their similarity. The user then labels a toe
as dissimilar. All toes become unselected.

Example scenario B. The user wishes to add rings to all the fin-
gers of a character’s hands except for the index finger. When the
user draws a ring about one finger with a surface-bound curve,
other fingers will show recommended edits based upon their sim-
ilarity. The user labels one index finger suggestion as dissimilar;
both index fingers become deselected. The user edits the fingers
(e.g., ring placement). In the future, the dissimilarity of the index
finger from the others will be remembered. If the user selects a
finger, all fingers except for the index finger will be automatically
selected.

Approach. We base our algorithm around finding an appropriate
scale and signature thresholds for scale-varying per-vertex sig-
natures. Our technique is agnostic to the choice of signature and
relies only on there being a scale-varying per-vertex signature
value. If appropriate thresholds cannot be found that match user
input, we update the signature values to ensure that the distinc-
tion is remembered for future selections.

With a specific task in mind (e.g., sharpening the points of
a star), the user selects faces of a manifold triangle mesh and
labels them as either similar or dissimilar. For each set of la-
bels, we classify all vertices of the mesh as similar or dissimilar,
even when the user’s labels conflict with the underlying shape
signature. We display the similarity map as the user is labeling,
allowing the user to iteratively refine the labeling until they are
satisfied with the result.

While a user is interactively labeling and until they are satis-
fied with the result, our algorithm for classifying vertices should
be independent of the user’s labeling order. We believe this pre-
dictability is more intuitive for users.
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Figure 4: Left: A model with a region labeled similar (shaded green) and dissimilar (shaded red). The selected regions are shown zoomed in the circles at top- and
bottom-left. Right: The signature values sampled at uniform logarithmic steps of the scale parameter. The green curves represent similar (green) vertices as their
signature values vary with the scale parameter. The red curves represent dissimilar (red) vertices. The teal curve is the normalized objective function Escale(t). The
minimum of the objective function ts corresponds to the scale where green curves and red curves are clustered separately by label. The blue bar spanning the green
curves at ts displays the signature interval computed for this example.

Once the user is satisfied with the similar/dissimilar classifi-
cation, the signature should be updated if necessary for future
selection operations. Our understanding of similarity across the
mesh may have indelibly shifted. This would translate, from a
user’s perspective, into a reduction of guidance necessary to es-
tablish a desired similarity map.

For the purposes of this paper, we restrict our attention to sig-
nature thresholding on a single model represented by a single
manifold triangle mesh. Extending this work to make threshold
comparisons across multiple models would require that the un-
derlying signature be commensurable across models.

Shape Signatures. The method we propose can be applied to any
per-vertex signature with a single scalar parameter S (x, t), where
x is a point on the shape and t is the scalar parameter. We ex-
perimented with signatures whose scalar parameter corresponds
to scale: the Heat Kernel Signature [10, 11], the Wave Kernel
Signature [14], and a new signature we call the Smoothed Shape
Diameter Function (3.1), based on smoothing the Shape Diame-
ter Function [5].

The Heat Kernel Signature is a restriction on the heat kernel
as it models the diffusion of heat through vertices of the mesh
over some temporal scale. Given x, y points on the underlying
manifold, the heat kernel kt(x, y) can be thought of as the amount
of heat transferred from x to y over time t. The Heat Kernel
Signature fixes the heat kernel to only consider changes over the
temporal domain, defining the signature as,

HKS(x, t) = kt(x, x) (1)

where the fixed heat kernel can be estimated by the eigen-
decomposition of the Laplace-Beltrami operator taken over a
mesh of n vertices,

kt(x, x) =

n∑
i=0

e−λitφi(x)2 (2)

where λi and φi are the eigenvalues and eigenfunctions respec-
tively. Figure 3 shows the Heat Kernel Signature at an arbitrary
temporal scale on two familiar meshes.

Similarly, the Wave Kernel Signature describes the average
probability of measuring a particle at a given location, with prob-
ability values varying by the energy assigned to the particle. As-
suming a normal distribution, the signature is defined as,

WKS (x, e) = Ce

∑
k

φ2
k(x)2e

−(e−logEk )2

2σ2 (3)

where Ce is a scale factor and Ek is the given energy. HKS and
WKS are nearly equivalent in computational cost and surface
evaluation, so we primarily compare to HKS, unless otherwise
noted.

Unfortunately, spectral signatures are impractical for large
meshes. They require the computation of eigenvalues and eigen-
vectors, whose time complexity is O(n3) for n vertices. Com-
puting only a fraction of the eigenvalues and eigenvectors is still
costly in time. Experimentally, computing 1

3 of them is as costly
as computing all of them. This is compounded by the fact that
the needed fraction is difficult to establish. In our experiments,
sometimes 20% and sometimes 80% were needed to accurately
reproduce the HKS. Given these limitations, we devised a more
efficient signature.

3.1. Smoothed Shape Diameter Signature

The Shape Diameter Function SDF(x) [5] computes the aver-
age length of a ray cast from x into the interior of the shape. We
define the Smoothed Shape Diameter Signature SSDS(x, t) to be
the function that minimizes the weighted combination of an en-
ergy measuring functional smoothness and an energy measuring
fidelty to the raw SDF value:

SSDS(x, t) = argmin
f

∫
Ω

(
(1 − t)( f (x) − SDF(x)) + t‖H f (x)‖2F

)
dx

where ‖H f (x)‖2F is the squared Hessian energy with natural
boundary conditions [34]. An example of the Smoothed Shape
Diameter Signature is shown in Figure 1.

Computing the SSDS has time complexity O(kn log n + n˜1.5),
where k is the number of rays shot per vertex and the ˜1.5 comes
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from the linear solve for the near-biharmonic system. This is
much faster than the O(n3) required for a spectral signature.

We provide pseudocode for SSDS in Algorithm 1, with imple-
mentations of subroutines available in libigl [35] and Eigen.

Algorithm 1 Computing SSDS for a mesh with vertices V , faces
F, and per-vertex normals N.

1: a← 100 {SSDS granularity}
2: M ← MassMatrix(V, F)
3: H ← HessianEnergy(V, F)
4: S ← ShapeDiameterFunction(V, F,N)
5: SSDS← 0#V×a

6: for i← 0 to a do
7: t ← i ÷ a
8: Q← (1 − t)M + tH
9: SSDS∗,i ← LDLTSolve(Q, (1 − t)MS )

10: end for
11: return SSDS

4. Self-Similarity Map Design

Given a manifold triangle mesh, we allow the user to design
a self-similarity map. The user selects regions they consider to
be similar. We propagate that selection using shape signatures.
If the user is dissatisfied with the propagated selection, they can
select undesired regions and explicitly label them as dissimilar
to their desired selection. For each successive region the user
labels, the following sequence of steps are performed:

1. The label is propagated to all vertices in the region.
2. An optimal scale parameter ts is found for our shape signa-

ture at which the vertices labeled as similar and dissimilar
are maximally separated (Section 4.1).

3. The shape signature of all mesh vertices is sampled at scale
parameter ts. A signature value interval is created to encom-
pass vertices labeled similar.

4. If the interval also contains vertices labeled dissimilar, we
apply a small perturbation to such vertices’ signatures to
shift them out of the interval. We apply the same pertur-
bation to other unlabeled mesh vertices with approximately
the same signature values.

The resulting interval contains all vertices labeled as similar; the
scale parameter and interval bounds are the similarity thresholds
we use to characterize other vertices on the mesh. In the proceed-
ing subsections we focus on a single set of relations, composed
of n similar and m dissimilar vertices, where n > 0 and m ≥ 0,
unless otherwise noted.

4.1. Parameter search

Different regions of a mesh will look similar or dissimilar at
different scales. Given a set of vertices labeled as similar or
dissimilar, we wish to find a single scale parameter value that
groups the vertices according to their labels. To do so, we pose
the choice of scale parameter t as a global optimization problem.
We minimize an objective function on the signature scale param-
eter given our set of relations:

ts = arg min
t

Escale(t) =
Esimilar

Edissimilar
(4)
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Figure 5: An illustration of signature value perturbation. Left: The signature
values of a set of vertices at scale t. Vertices labeled similar are shown in green
and dissimilar in red. Unlabeled vertices are shown in white. Middle: Unlabelled
vertices are assigned the label of their closest labelled neighbor. Right: The
dissimilar sub-intervals are offset to remove them from the larger interval around
all similar (green) vertices, producing a consistent classification.

where,

Esimilar =1 +
∑

x,y∈similar

|S(x, t) − S(y, t)|

+
∑

x,y∈dissimilar

|S(x, t) − S(y, t)|

Edissimilar =1 +
∑

x∈similar
y∈dissimilar

|S(x, t) − S(y, t)|

Escale is defined to be the ratio of relations we wish to cluster
together against relations between which we wish to maximize
separation. There are two ways to reduce the ratio: driving the
numerator Esimilar to one, which requires tightly clustering group-
ings of similarly labeled relations, and driving the denominator
Edissimilar towards infinity, which necessitates increasing the dis-
tances between dissimilar relations. This is exactly the desired
behavior for our signature interval. Therefore, by minimizing
our objective function, we determine the optimal scale parame-
ter for thresholding unlabeled patches. Figure 4 illustrates the
objective function applied to a set of relations.

Since our objective function is a 1-dimensional optimization
problem, we obtain a coarse solution for ts by sampling the scale
space 100 times. For the Smoothed Shape Diameter Signature,
we uniformly sample the range [0, 1]. For the Heat Kernel Sig-
nature, we logarithmically sample the interval suggested by Sun
et al.: [4 ln 10/λk, 4 ln 10/λ2], where k is the number of mesh
vertices and λi are eigenvalues of the Laplace-Beltrami operator.
We refine this coarse solution by using it as the initial guess to an
L-BFGS-B [36] solver, with the same lower and upper bounds,
to obtain our final scale parameter value ts.

4.2. Thresholding
Having determined the scale parameter t that is most consis-

tent with the user’s labeling of various mesh patches, we pro-
ceed to construct our similarity thresholds. We set the inter-
val’s minimum and maximum signature values to the minimum
and maximum signature value from the set of all vertices la-
beled similar: [Imin, Imax], where Imin = minx∈similar S(x, t) and
Imax = maxx∈similar S(x, t).1

1If there is only a single vertex labeled similar, the above interval collapses
to a single value. No other vertices’ signatures values will be inside, which is
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Figure 6: Signature threshold perturbations applied to two regions that share a high degree of symmetry (the dog’s ears). Left plot: The right ear is labeled similar and
the left ear as dissimilar. Our objective function selects a scale parameter and initial interval for the similar regions. Right plot: Dissimilar vertices within the interval
are shifted out with perturbations that fall off smoothly to nearby scale parameters. The ear labeled similar remains within the interval.

At this point, there may still be vertices labeled dissimilar in
[Imin, Imax]. To remain consistent with user guidance, we modify
the signature function of such vertices—as well as unlabeled ver-
tices with signature values “close” to the value of the dissimilar
vertex—to remove them from the interval. We add the smallest
perturbation to all such vertices’ signatures that pushes them out
of the interval (Figure 5). This perturbation is a scalar impulse
at scale t. In Section 4.3, we smooth the falloff to nearby scale
values.

Let Q be the set of vertices labeled dissimilar that lie within the
signature interval [Imin, Imax]. We wish to adjust the signatures of
all vertices in Q so that they no longer lie within the interval. We
also wish to adjust the signatures of any unlabeled vertices with
signatures closer to a vertex in Q than to a vertex labeled similar.
For each vertex v ∈ Q, we find the smallest absolute difference
dv from its signature to the two interval endpoints Imin and Imax.
We also find the smallest absolute difference wv between v’s sig-
nature and any vertex labeled similar. Any unlabeled vertex with
a signature value within wv

2 of v is closer to v than a similar vertex
and so should also be adjusted. We push the dissimilar vertex v
out of the similar signature interval by adjusting its signature. We
add (or subtract) the offset ov = dv +

wv
2 +ε, where ε = 1e−7 keeps

interval boundaries from overlapping We also add (or subtract)
the same offset ov to unlabeled vertices whose signature values
are within [Imin, Imax] and closer to v’s than to any other labeled
vertex. In effect, this removes a sub-interval around each v ∈ Q
from the larger similarity interval.

The perturbations ov are stored in a separate data struc-
ture which we call the exception map. Once all perturbations
are added, we are left with similarity thresholds (our interval
[Imin, Imax]) on our shape signature that demarcate similar ver-
tices; we use the interval to classify unlabeled vertices. We pre-

undesirable. In this case, we set the default interval bounds to [ 1
2 (s0 + d0), 1

2 (s0 +

d1)], where s0 is the signature value of the vertex labeled similar at time t, and
d0, d1 are the next smaller and larger signature values among vertices labeled
dissimilar. (If no vertices are labelled dissimilar, the minimum and maximum
vertex signature values of the entire mesh at time t are used.)

vent contradictory situations by not allowing the user to label the
same face or vertex as both similar and dissimilar.

4.3. Impulse falloff

We have now constructed a similarity threshold that respects
user guidance for a set of labeled vertices at a particular scale
value t. In an interactive session, it is desirable to smooth
the exception map in order to propagate the corrections made
through the perturbations to other nearby scales in the signature,
t f ∈ [t − δ, t + δ]. For each ov, the perturbation applied at scale
parameter t to v and its nearby unlabeled vertices, we construct a
quadratic falloff “bump” and apply the perturbation ov to a scale
neighborhood about t. The perturbation we ultimately apply is
therefore, bv(p) = ov f (p), where

f (p) =


1 − (3p2) p < 1/3
1 − (−1.5p2 + 3p − 0.5) 1/3 ≤ p < 1
0 otherwise

, (5)

p =
∣∣∣∣ t f−t

tN−t

∣∣∣∣, t f is the scale value we’re applying the fall-off on,
and tN is the closest scale value of a previously established sim-
ilarity threshold on the mesh (or the scale upper/lower bound,
whichever is closer). tN prevents the perturbation for one set
of labeled vertices from affecting a previously established self-
similarity.

The practical impact of this smooth perturbation is that any
subsequent set of labeled vertices will create a similarity thresh-
old on a modified version of the underlying shape signature, in-
corporating relationships previously inferred from other sets of
user-labeled relations. Our exception map stores the collection of
quadratic bumps separately from the initial signature values and
applies them on-the-fly. Figure 6 shows perturbations removing
dissimilar vertices from the similarity threshold interval and their
falloff impacting nearby signature values. Note that falloff con-
tributions are order dependent. That is, there is no guarantee the
similarity thresholds generated by solving for sets of labeled ver-
tices A then B will produce the same result as solving for B then
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Figure 7: (top) The best curves from random seeding without gradient-based
optimization; (bottom) The best curves with gradient-based optimization

A. This is because the impact of offset falloff is reduced with
each set of labels, as the parameter search space is bisected by
each solve. Functionally, this behaves as though the first labels
having a higher weight then the second set of labels. If the user
changes their mind, or the order of labelling, more interaction
is required to come to the desired result. However, in our us-
age, this scenario generally only requires one more suggestion to
correct.

5. Curve Propagation

Beyond point-based region similarity, many operations can be
formulated in terms of curve feature propagation. For exam-
ple, candidate locations for repeated geometry can be found by
searching for a similar feature curve, or a stroke of 3D paint can
be applied to many locations simultaneously. To support this,
users can draw an open curve on the surface and see similar
curves elsewhere. The user chooses how many similar curves
to show.

5.1. Curve Definition
We represent our curves in tangent space on the surface via

an “unrolling” routine which creates a distortion-free parameter-
ization of only those faces populated by the curve. We use an
arbitrary 2D coordinate frame in the plane of the triangle con-
taining the first curve point as the tangent space. To initially
obtain tangent-space coordinates for the entire curve, the points
drawn in 2D are projected onto the mesh via ray casting to obtain
barycentric coordinates. Unrolling proceeds from the first face
containing the first curve point. If a subsequent curve point lies
in the same triangle, its tangent-space coordinates are known. If
a subsequent curve point lies in an adjacent triangle, the adjacent
triangle is rotated about the shared edge into the tangent plane,
extending it. The point’s tangent-space coordinates can now be

trivially computed. Due to a low input sampling rate (relative
to triangle density) or concavities in the mesh, adjacent points
in the curve may not lie inside the same or adjacent triangles.
When such a gap is detected, we run a Dijkstra’s shortest-path
algorithm from the triangle on one side of the gap until the tri-
angle on the other side is found. The shortest-path algorithm is
run on the graph of medial triangles of the 3D mesh (the trian-
gles formed by connecting the edge midpoints of each triangle).
The sequence of faces selected by the shorted path algorithm are
each rotated in turn about their shared edges to extend the tan-
gent plane to the subsequent curve point. This process continues
until the entire curve has been traversed. We refer to the resulting
flattened sequence of mesh faces as the “curve cover” and store
our curve’s 2D tangent space coordinates and barycentric coor-
dinates with respect to these faces. Note that the same mesh face
may appear more than once in a curve cover.

5.1.1. Curve Similarity
Deciding if one curve is similar enough to another is a key part

of our applications. We measure similarity between curves P and
Q on the surface discretized with the same number of points as

Ecurve(P,Q) =

n∑
i=1

(ϕ(Pi) − ϕ(Qi))2 (6)

where ϕ is a function that takes a face and barycentric coordinate
and returns a barycentrically interpolated shape signature value.
If Ecurve(P,Q) < Ecurve(P,O), then Q is more similar to P than O.

Consider the situation in which Q is a copy of P’s tangent-
space coordinates transplanted into another arbitrary tangent
space on the surface. The core of our edit propagation routine
relies on the ability to slide Q around on the surface in direc-
tions reduce E(P,Q). We define a method for transforming our
curves rigidly within tangent space while maintaining a valid
curve cover. The transformation is simply a 2D rigid operation,
applying a rotation of θ and an (x, y) translation to all the points
in the given curve:

P′ = RθP + T(x,y) (7)

However, after transforming the curve points, some of the
points will no longer be contained in the curve cover. In order
to find a new cover, we first unroll faces along the tangent-space
vector connecting the untransformed and transformed first curve
point. Each time an edge is intersected, we unroll the adjacent tri-
angle. The triangle containing the transformed first curve point
defines our new tangent space. We obtain our new curve cover
by similarly unrolling faces along the tangent-space vector con-
necting each curve point to the next.

5.2. Hybrid Global/Local Optimization
In order to suggest new curve locations and mesh edits, it’s

necessary to choose locations on the surface where we’ll initially
place copies, Ci, of the original user drawn curve, P. Following
this initial (global) placement, we then perform gradient-based
optimization. Ideally, this seed placement would place a seed
in each energy basin. In practice, this is virtually impossible to
guarantee.

5.2.1. Seed point search
For our global step, we sample a fixed number of randomly

chosen faces as initial locations (n = 500 in all cases). Based
on the user’s desired number of curve suggestions k, we select
the k lowest values of E(P,Ci). Since the user is generally not
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interested in such a large number of curves, we select the k lowest
values of E(P,Ci) where k is the number of suggestions the user
would like. While this step filters our suggestions within some
neighborhood of a possible similarity match, it does not solve for
orientation, nor can it make any sort of local minima guarantee
about placement.

5.2.2. Gradient-based optimization
Our objective in finding best placements for suggested curves

is reducing Ecurve(P,Ci). Since our only parameters are the
(x, y, θ) 2D transformation we can apply to a curve, we can easily
express the analytical derivative

∇x,y,θEcurve(P,C′i ) =
∑

i

∇x,y,θ(ϕ(Pi) − ϕ(C′i ))
2

where C′i = RθCi + T(x,y). This is because locally the signature
values vary barycentrically inside the tangent-space triangle con-
taining each curve point. We can express the barycentrically in-
terpolated signature function ϕ(C′i ) in terms of tangent-space co-
ordinates x, y as a linear equation H(x, y) = Ax + By + D by
solving S (v1, t)

S (v2, t)
S (v3, t)

 =

x1 y1 1
x2 y2 1
x3 y3 1


A
B
D

 (8)

where xi, yi are the tangent-space vertices of the triangle contain-
ing the point under evaluation in Ci and S (vi, t) the corresponding
signature value.

The 2D rigid transformation function is:

f (x, y, θ) =

[
cosθ −sinθ
sinθ cosθ

] [
xi

yi

]
+

[
x
y

]
=

[
xicosθ − yisinθ + x
xisinθ + yicosθ + y

]
(9)

Looking at the Jacobians,

J f =

[
1 0 −xisinθ − yicosθ
0 1 xicosθ − yisinθ

]
(10)

JH =
[
A B

]
(11)

JH J f =
[
A B A(−xisinθ − yicosθ) + B(xicosθ − yisinθ)

]
(12)

We optimize this using L-BFGS-B from CppOptimizationLi-
brary [37]. An optimization with line search is necessary because
Ecurve (Equation 6) is piecewise smooth but only C0 across trian-
gle boundaries.

5.3. Comparable Methods

Our definition of surface curves tackles a similar problem as
the snakes-on-a-surface approach of Bischoff et al. [38] in that
we also transform curves on a surface. However, Bischoff et al.’s
approach has several limitations. First, Bischoff et al.’s curves
cannot self-intersect, whereas our curves can self-intersect an ar-
bitrary number of times. Second, the resolution of snakes is de-
pendent on the mesh resolution, since snake vertices always lie
on mesh edges, whereas our curves can have any number of ver-
tices within the interior of a triangle. Third, our tangent-space
curve definition allows us to arbitrarily transplant our curves
to any location and orientation on the surface while preserving
curve fidelity. Figure 8 shows a curve that Bischoff et al.’s ap-
proach could not handle.

Figure 8: Our approach to curves allows us to effortlessly handle self-
intersections, keeps curve resolution independent of mesh resolution, and trans-
forms curves anywhere on the mesh without introducing intrinsic distortion.

Figure 9: A subdivided icosahedron with (a) a single five face patch labeled as
similar and (b) the subsequent segmentation given the sparse selection.

6. Applications

To demonstrate the utility of our interactive similarity thresh-
olds, we modified a set of fundamental mesh operations to take
as input our classification of patches on the mesh under thresh-
olding. This reduces the workload on the user or extends the
functionality of the originally proposed technique. The supple-
mental video demonstrates the behavior and performance of our
curve propagation, as well as a comparison of HKS and SSDS
signatures.

Implementation. We use libigl [35]’s implementation of core
algorithms and routines, such as cotangent matrix calculations
and the shape diameter function. Eigen’s solver was used to
find eigenvalues and eigenvectors for Heat Kernel Signature and
Wave Kernel Signature construction.

6.1. Segmentation
We adopt the same mesh segmentation strategy as presented in

Surfacing by Numbers [26], wherein the authors treat the mesh as
a graph, establishing a collection of source and sink nodes based
off of labeled user strokes across the surface, and solve for the
min-cut. We use the same edge weights as Zelinka et al.:

ei j = η
2π − θi j

2π
+ γ

di j

d̄
(13)
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where ei j is the edge weight between nodes i and j, θi j is the
dihedral angle between the faces that share the edge (i, j), di j is
the edge length between i and j, and d̄ is the average edge length
of all edges in the mesh. η and γ balance the contribution of di-
hedral angle versus edge length to the edge weight, but for our
purposes we set η = γ = 1 unless otherwise noted. The min-cut
of this graph is used as the boundary between two classes of seg-
ments. With regards to implementation, we solved for the min-
cut using MAXFLOW [39]. Distinct segments were identified
by a breadth-first search of the cut mesh, with each disconnected
region identified as a segment.

Previously, the user would need to indicate, via drawing on
the surface, a significant amount of the approximate extent of the
shape segment they were interested in. Incorporating similarity
thresholds into the interactive portion of the segmentation pro-
cess, we replace the stroke drawing interface with sparse patch
classification. Figure 9 shows that only a single patch of five
faces is required to successfully segment all the mesh symmetries
present in a subdivided icosahedron, whereas the original inter-
active step would require the user to mark every single symmetry
manually. Figure 10 demonstrates the convenience of shape sig-
nature thresholds applied to a more interesting deer model. Note
that this example uses HKS so an ambiguity exists when select-
ing the leg and deselecting the body due to similar curvature.
This is also seen when selecting an antler and marking the head
as dissimilar. While the legs and antlers are better matches under
the HKS, the head and snout still display geometric properties
similar to antlers and legs—notably curvature at the tips. One
additional user edit would remove these matches in both cases.
If we were to instead use SSDS, these matches would not occur,
since the volume difference is significant.

6.2. Geometry transfer
We enable the propagation of 3D geometry edits made directly

on the mesh. By employing the aforementioned curves as an
editing tool, we can find appropriate locations for new geometry
placement.

1. The application chooses an appropriate shape signature (or
a vectorized amalgamation that can be queried for a scalar
metric). For our purposes, we use the Smoothed Shape Di-
ameter Signature (3.1).

2. The user draws the contour around the border, or along the
central axis, of the geometry they wish to be copied on the
surface.

3. The user requests some k suggestions for new placements.
4. New curve seeding and location refinement proceed accord-

ing to Section 5.2, finding the k best curves to return.
5. The suggested placement of new curves will appear, and the

user can accept or reject them. This labelling will classify
the curve covers under the similar/dissimilar scheme de-
scribed in Section 4, and new suggestions can be requested
that will respect these new value assignments.

6. Accepted curves have the geometry assigned to them repli-
cated relative to their placement.

An example of this process can be seen in Figure 2 in which a
curve in the shape of a ring is drawn on finger, then the returned
suggested curves are all accepted, and a ring pop is placed atop
each curve’s location, aligned with the curve direction.

In general, some matches may be quantifiably worse (by sig-
nature residuals) than others. In the future, we would like to
explore automatically selecting the number of suggestions, such
as by clustering based on result residuals and showing the best
cluster.

Figure 10: A deer segmented by our method using HKS given different sets
of labels (green vertices are similar, red vertices are dissimilar). (a) Two small
patches segment all the legs. (b) Extracting segments for the antlers. (c) A re-
finement of (b), excluding the main body of the antlers and just segmenting the
tips.

6.3. Pattern Duplication

In addition to geometry propagation, we also apply our tech-
nique to pattern duplication. Using our implementation, the user
draws a pattern on the mesh, arbitrarily or aesthetically placed,
defining a curve whose surface-bound shape will remain undis-
torted in all of the suggestions that will later be presented. The
workflow is essentially the same as 6.2, but the results are used
for either merging the actual curve geometry with the surface, or
using the surface-bound coordinates to access and modify mesh
attributes.

Figure 11 shows this procedure illustrated on Homer with a
single stripe running down the side of the stomach. Given this
sparse information, the inferred suggestions show a series of
stripes that equally space out on both sides of the stomach, with
proper orientation and a visually pleasing tendency towards equal
spacing. We commit these stripes to the mesh in a merge opera-
tion, creating new geometric features patterned across the surface
from a single user effort.

It should be emphasized that the behavior of the suggestions is
influenced by the shape signature being used. The same example

9



Initial Curve SSDS Results HKS Results

Figure 11: A line is drawn down Homer’s belly (left). The curve propagation suggestions are shown for SDSS (middle) and HKS (right). The HKS suggestions more
closely follow the curvature of the surface under the line (staying where there is an inflection around Homer’s sides), whereas the SSDS suggestions correspond to
consistent volume regardless of overall curvature.

of stripes on Homer with the Heat Kernel Signature, whose val-
ues follow curvature far more than the Smoothed Shape Diameter
Signature, would return suggestions in regions that shared simi-
lar curvature instead of shape volume. Neither of these behaviors
is objectively correct more correct than the other, but should be
taken into account when choosing a shape signature as an initial
expression of surface similarity.

6.4. Performance

All applications presented were computed in a short amount of
time that exceeds what would be considered realtime, with most
results produced within roughly 12 seconds on average, ranging
from approximately 4 seconds to 27 seconds. These times re-
flect the codebase run on modest consumer laptop and desktop
hardware. The timings do not include calculating the Smoothed
Shape Diameter Signature, whose values are stored as part of a
model pre-processing step for demonstration purposes.

7. Conclusion

We described a method for the interactive design of self-
similarity maps through solving for shape signature scales,
thresholds, and exceptions that best represent user guidance on
the mesh in the form of sparse patch labeling. We also described
an approach to propagate curve features throughout a mesh via
global/local optimization. Our applications demonstrate the po-
tential broad applicability of our method, though we anticipate
other uses arising. Tracking a user interacting with a mesh via
some creative process to determine implicit labels could be an
easy way to integrate our method into existing tools. Likewise,
the Smoothed Shape Diameter Function is generally useful and
deserves broader adoption.

Limitations. One limitation of our method is that it does not han-
dle contradictory labeling. A user cannot label the same vertex
or patch as both similar and dissimilar. However, classification
of a vertex or patch at scale parameter t can be different than that
at a different scale parameter u for a different set of relations.
We believe this is a reasonable restriction as the logical construc-
tion of the labeling makes both tags mutually exclusive from an
interactive perspective anyway.

A second limitation is that while similarity thresholds handle
approximate symmetries well, discerning a user pattern of selec-
tions on a mesh containing a large number of perfect symmetries
can degenerate into the user manually excluding each symme-
try they don’t want. This is due to the fact that if two signature
values for two different vertices are identical at every scale, and
one is labeled similar, the other will also always be inferred to be
similar unless manually labeled dissimilar.

Finally, our global/local curve propagation is seeded via uni-
form sampling of the mesh. While this did not present a problem
in our examples, it could become problematic for more irregular
shapes. It would be interesting to explore rough feature discovery
driven by the signature to obtain a better sampling.

Future Work. In the future, we would like to explore the ram-
ifications of updating signatures, and subsequently thresholds,
across interactive geometry edits. This becomes particularly rel-
evant if we’re progressively building similarity mappings as the
user work on and adds to a mesh. There are a number of chal-
lenges that would need to be addressed, not the least of which
is quickly making small incremental approximate updates to the
shape signature in real-time. This could be done based on visibil-
ity for the Smoothed Shape Diameter Signature. This would be
more challenging for the Heat or Wave Kernel Signature with-
out changing and decomposing the Laplace-Beltrami operator,
which is restrictively expensive. It will also be necessary to en-
sure that similar changes propagated to regions that are all within
a threshold do not shift any of the modified regions outside of
the threshold, which would break similarity when it should in-
tuitively be preserved. This might be approached by having a
hybrid signature system that makes very coarse approximations
in the short-term before mesh geometry changes are fully com-
mitted and a better signature update can be made without impact
on the user experience. We would also like to investigate corre-
spondence editing in the functional map setting [40], where our
impulse falloffs may also be able to provide user control. Finally,
we would like to integrate our approach into a popular mesh edi-
tor for further evaluation.
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[11] K. Gȩbal, J. A. Bærentzen, H. Aanæs, R. Larsen, Shape analysis using the
auto diffusion function, Computer Graphics Forum 28 (5) (2009) 1405–
1413.

[12] M. Ovsjanikov, Q. Mrigot, F. Mmoli, L. Guibas, One point isometric match-
ing with the heat kernel, in: Computer Graphics Forum, Vol. 29, Wiley
Online Library, 2010, pp. 1555–1564.

[13] T. K. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, Y. Wang, Persistent heat sig-
nature for pose-oblivious matching of incomplete models, in: Computer
Graphics Forum, Vol. 29, Wiley Online Library, 2010, pp. 1545–1554.

[14] M. Aubry, U. Schlickewei, D. Cremers, The wave kernel signature: A quan-
tum mechanical approach to shape analysis, in: 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Workshops), IEEE,
2011, pp. 1626–1633. doi:10.1109/ICCVW.2011.6130444.
URL http://ieeexplore.ieee.org/document/6130444/

[15] R. Gal, D. Cohen-Or, Salient geometric features for partial shape matching
and similarity, ACM Transactions on Graphics (TOG) 25 (1) (2006) 130–
150.

[16] R. Liu, H. Zhang, Mesh Segmentation via Spectral Embedding and Contour
Analysis, Computer Graphics Forum 26 (3) (2007) 385–394. doi:10.

1111/j.1467-8659.2007.01061.x.
URL http://doi.wiley.com/10.1111/j.1467-8659.2007.01061.

x

[17] L. Shapira, A. Shamir, D. Cohen-Or, Consistent mesh partitioning and
skeletonisation using the shape diameter function, The Visual Computer
24 (4) (2008) 249–259. doi:10.1007/s00371-007-0197-5.
URL http://link.springer.com/10.1007/s00371-007-0197-5

[18] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, D. Dobkin, Modeling by example, in: ACM Transactions
on Graphics (TOG), Vol. 23, ACM, 2004, pp. 652–663.

[19] X. Chen, A. Golovinskiy, T. Funkhouser, A benchmark for 3d mesh
segmentation, ACM Transactions on Graphics 28 (3) (2009) 1.
doi:10.1145/1531326.1531379.
URL http://portal.acm.org/citation.cfm?doid=1531326.

1531379

[20] E. Kalogerakis, A. Hertzmann, K. Singh, Learning 3D Mesh Segmentation
and Labeling, ACM Transactions on Graphics 29 (3).

[21] Y.-K. Lai, S.-M. Hu, R. R. Martin, P. L. Rosin, Fast mesh segmentation us-
ing random walks, in: SPM ’08: Proceedings of the 2008 ACM symposium
on Solid and physical modeling, 2008, p. 9.

[22] A. Shamir, A survey on Mesh Segmentation Techniques, Computer Graph-
ics Forum 27 (6) (2008) 1539–1556. doi:10.1111/j.1467-8659.

2007.01103.x.

URL http://doi.wiley.com/10.1111/j.1467-8659.2007.01103.

x

[23] R. Liu, H. Zhang, Segmentation of 3d meshes through spectral clustering,
in: Computer Graphics and Applications, 2004. PG 2004. Proceedings.
12th Pacific Conference on, IEEE, 2004, pp. 298–305.

[24] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, H.-P. Seidel, Intelligent mesh
scissoring using 3d snakes, in: Computer Graphics and Applications, 2004.
PG 2004. Proceedings. 12th Pacific Conference on, IEEE, 2004, pp. 279–
287.
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