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Abstract

Many applications require the extraction of isolines and isosurfaces from scalar functions defined on regular grids.
These scalar functions may have many different origins: from MRI and CT scan data to terrain data or results of a
simulation. As a result of noise and other artifacts, curves and surfaces obtained by standard extraction algorithms
often suffer from topological irregularities and geometric noise.

While it is possible to remove topological and geometric noise as a post-processing step, in the case when a large
number of isolines are of interest there is a considerable advantage in filtering the scalar function directly. While most
smoothing filters result in gradual simplification of the topological structure of contours, new topological features
typically emerge and disappear during the smoothing process.

In this paper, we describe an algorithm for filtering functions defined on regular 2D grids with controlled topology
changes, which ensures that the topological structure of the set of contour lines of the function is progressively
simplified.
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1. Introduction

Many types of data are defined as scalar functions on
unstructured or structured meshes. Such scalar fields are
produced by MRI and CT scanners, scientific comput-
ing simulations, extracted from databases, or obtained
by sampling distance functions to pointsets or surfaces.
Quite often it is necessary to extract geometric infor-
mation from such scalar fields, most commonly contour
lines and isosurfaces, to which we will refer as contours.
Contours often have to be extracted for multiple scalar
function values, which motivates considering the topol-
ogy of the complete set of contours, rather than that of
an individual contour.

A variety of applications perform various types of
processing either on the original scalar function data or
on individual extracted isosurfaces. For example, the
scalar field of an extracted contour can be smoothed to
eliminate noise or to obtain a simplified representation
of the object of interest, or enhanced to emphasize fea-
tures of interest. The advantage of applying such pro-
cessing operations to the scalar function, rather than
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to an extracted contour represented by a mesh, is that
all contours are processed simultaneously and topology
modification is possible. For example, spurious small-
scale blobs due to noise in the scalar data can be elimi-
nated.

While certain types of topology changes are desir-
able, other changes may have to be avoided. For ex-
ample, if a blood vessel network is extracted from an
image, breaking connected components of the isosur-
face is highly undesirable. Unfortunately, topological
changes resulting from the application of a filter are dif-
ficult to control: even a simple Laplacian smoothing fil-
ter can result in undesirable disconnected components
emerging (Figure 8).

It is desirable to be able to control the topology
changes occurring during the filtering process. In the
extreme case, all changes can be disallowed, result-
ing in topology-preserving filtering; in other cases, cer-
tain types of topology changes are allowed while other
changes are not. For example, if topological simplifica-
tion is desired, merging components is acceptable while
creating components is not.

One possible approach to the problem is to perform
a complete topology analysis using contour trees or dis-
crete Morse-Smale complexes, construct a topology hi-
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erarchy when topology simplification is desired, and de-
sign filters respecting the constraints (for example, max-
imal descent paths in the Morse-Smale complexes). The
advantage of this approach is complete and entirely pre-
dictable control over topology. At the same time, the
filter construction is far more complicated, as relatively
complex constraints need to be imposed (cf. Bremer
et al. [1]). The other approach is to augment a filter-
ing technique with topology control by detecting and
preventing topological changes by local modifications
to the filter. With the latter approach, one hopes that
differences with the uncontrolled process can be mini-
mized.

In this paper we describe an algorithm of the second
type. Our algorithm adds topology control to flow-type
filters which define a parametric family of results p(t),
t = 0 . . . t1 where p(0) is the vector of initial values of
a scalar function defined on a two-dimensional regu-
lar grid. The idea of the algorithm is straightforward.
The algorithm tracks critical points of the scalar func-
tion field to predict and determine the type of topol-
ogy changes and locally adjust the rate of change of
the scalar field to prevent disallowed changes. We con-
sider three examples: Laplacian smoothing, sharpening,
and anisotropic diffusion, and demonstrate that the al-
gorithm makes it possible to control topology changes
while retaining overall filter behavior and introducing
relatively small errors.

Depending on problem semantics, the algorithm can
either ensure complete topology preservation (e.g. for
sharpening) or reduction in the number of topologi-
cal features (for smoothing algorithms). The algorithm
does not depend on dimension or structure of the grid
in a fundamental way, and can be extended to three di-
mensions and unstructured grids.

2. Previous work

Analysis and simplification of the topology of vec-
tor fields and surfaces is a recurring topic in visual-
ization, computational geometry and computer graph-
ics. While many mesh simplification algorithms have
allowed topology changes, in most cases these were un-
predictable. One of the earliest examples of controlled
topology simplification is He et al. [2], in which filter-
ing on volume rasters is used to simplify objects. Al-
pha shapes were used in subsequent work [3]. These
approaches use a reasonable algorithmic definition of
topology simplification but do not track feature changes
and focus on individual surfaces or solids enclosed by
surfaces. Other work focusing on surfaces includes
Guskov and Wood [4] and Wood et al. [5]. Our work is

more similar to analysis and simplification of the struc-
ture of height fields and vector fields, for which com-
plete collections of contours and stream lines are con-
sidered. The foundation of a significant fraction of re-
cent work in this area is Morse theory (e.g. Milnor [6]),
which relates the topology of smooth manifolds to criti-
cal points of functions defined on these manifolds. Hel-
man and Hesselink [7] applied critical point analysis to
flow visualization. de Leeuw and van Liere [8] was one
of the first examples of topology simplification for vec-
tor fields. The simplification of de Leeuw and van Liere
[8] is discrete rather than continuous: whole regions
were removed from the field. An alternative approach
was proposed in Tricoche et al. [9], which merges criti-
cal points into higher-order points. Tricoche [10], Tric-
oche et al. [11] describe how topology can be continu-
ously simplified by removing pairs of critical points.

Two important approaches to analyzing topological
structure of a scalar field are contour trees [12–15] and
structures based on Morse-Smale complexes [1, 16–18].

The contour tree is a data structure that fully de-
scribes the topology of a scalar field, with contours
passing through critical points as nodes. Contour trees
have been extensively used for fast isosurface extrac-
tion and define a natural topological hierarchy. The
2D Morse-Smale complex has vertices at critical points
which are connected by maximal descent paths: similar
structures are also defined for an arbitrary number of di-
mensions. A topological hierarchy can also be defined
using Morse-Smale complexes and feature persistence.

Both types of structures were used for topological
simplification of scalar fields using associated hierar-
chies and different types of persistence functions, e.g.
in recent papers [1, 19]. In both cases, the scalar field
function values are updated to eliminate features lo-
cally. In Bremer et al. [1], smoothing is performed with
constrained Morse-Smale complex boundaries, and the
boundaries themselves are adjusted using smoothing.

While our algorithm can be used to construct topo-
logical hierarchies, this is not our primary goal. We
aim to provide a tool that adds topology control to a
variety of processing techniques for scalar data. Our
primary concern is not visualization and analysis of a
scalar field topology, rather, we aim to augment exist-
ing image processing tools with topological guarantees,
while preserving the basic behavior of the tool.

The recent work Sohn and Bajaj [20] on time-varying
contour topology deals with similar types of evolving
scalar data. The goal of this work is accurate feature
tracking in a given dataset, while our goal is to alter
a time-dependent dataset to eliminate certain types of
topological events.
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The topological evolution resulting from filtering,
smoothing in particular, is often considered in vision
and medical imaging literature. The concept of scale
space based on Laplacian smoothing (heat flow), pro-
posed in Witkin [21], is used in a variety of applica-
tions, and one can consider similar types of construc-
tions based on different flows, such as anisotropic dif-
fusion [22] or curvature flow. The topology of scale
spaces was studied in Damon [23], from a mathematical
point of view, and more recently in Florack and Kuijper
[24].

3. Topological preliminaries

Our algorithm is based on the correspondence be-
tween topological features and pairs of critical points.
Topological events, i.e. the changes in the topology of
the sets of contours, are associated with changes in these
pairs. For example, a new connected component ap-
pears if a pairs of critical points appear, and an existing
component vanishes when two critical points merge.

In this section, we briefly review relevant defini-
tions and facts from differentiable and discrete topology,
which are used by our algorithm.

Smooth Morse theory.. We restrict our attention to the
case of functions defined on the plane. A function f is
called a Morse function if it is at least twice differen-
tiable, its values at critical points defined by ∇ f = 0 are
distinct and its Hessian, i.e. the matrix of second deriva-
tives, has nonzero determinant at critical points. Critical
points with nondegenerate Hessian are called simple. If
the Hessian vanishes at a critical point, it is called com-
plex.

The Morse Lemma states that for a suitable choice
of coordinates the function has the form ±x2± y2 in a
neighborhood of any critical point. The number of mi-
nuses is the index of the critical point. Saddles have
index 1, maxima have index 2, and minima have index
0. For functions defined on planar domains, it is conve-
nient to add a point at infinity to the plane and assign a
minimum to it with infinite negative value.

The indices of critical points x of functions defined
on a sphere are known to satisfy

∑
x
(−1)index(x) = 2 (1)

The quantity (−1)index(x) is called the topological
charge of a critical point.

Critical points can be used to describe the topological
structure of the contour lines of the function f . The level

set f−1(c) is a smooth curve unless c is a value at a
critical point. Furthermore, if we consider an interval of
values [c1,c2] not containing any critical point’s value,
the level sets for all c ∈ [c1,c2] have the same topology.
Thus, the critical points define all topological changes
of level set curves.

The singular level sets corresponding to maxima and
minima consist of isolated points and correspond to van-
ishing/appearing features if we regard the traversal of
increasing values of f (x) as advancing in time. Saddles
correspond to the merging/splitting of features.

Multiple simple, closed contours meet at a saddle.
(Exactly two if the saddle is simple.) We define a fea-
ture to be the interior of one of these contours pairing
an unpaired extremum in the interior with the saddle.
The nesting structure of the feature contours implies a
feature hierarchy. (There are many possible pairings
and hence many possible feature hierarchies for a given
topology.)

Discrete Morse theory.. While one can define C2 inter-
polants for functions especially on regular grids, study-
ing critical points of such functions is difficult. It is
preferable to generalize the notions of smooth Morse
theory to piecewise-linear functions. We mostly follow
Edelsbrunner et al. [17] in our definitions. A critical
point of a piecewise linear function is always at a ver-
tex. Its type can be inferred from comparing the values
of the critical point with adjacent values. We consider
lower and upper stars of a vertex. The lower star con-
sists of all simplices incident to v whose vertex faces
have function value f (w)≤ f (v), and the upper star con-
sists of all simplices whose vertex faces have function
value f (w) ≥ f (v). (Figure 1, based on Edelsbrunner
et al. [17]). Each star can be decomposed into continu-
ous wedges. If one of the stars coincides with the entire
neighborhood the point is a local minimum (upper star)
or maximum (lower star). If each star has exactly one
wedge, the point is considered regular. If the number
of wedges in each star is k+ 1 for k ≥ 1, then the star
is a k-fold saddle (simple saddle for k = 1). Unlike the
smooth case, complex saddles are stable. The type of
a vertex can be determined by the vertex signature i.e.
a sequence of ones and zeros corresponding to the ad-
jacent points, ordered counterclockwise, with one indi-
cating that the value at the adjacent vertex is higher than
the value at the center.

A discrete Morse function is any piecewise linear
function for which the values at critical points are dis-
tinct. To operate on arbitrary piecewise linear functions,
we require a tie-breaking scheme such as Simulation of
Simplicity [25]. As we only use value comparisons in
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our algorithm, it is sufficient to simply assign an order-
ing based on indices of vertices to break ties. However,
it is necessary to use first-order perturbations to resolve
ties for calculated event times (Section 4).

maximum        regular        saddle     k-fold saddle 

Figure 1: Different vertex types [17].

Singularities of parametric families of functions..
Smoothing a function using a flow equation, e.g.
∂ f/∂ t = ∆ f , leads to a solution f (x, t), which can be
regarded as a one-parameter family of functions. While
complex critical points of functions can be eliminated
by small perturbations, this is no longer true for para-
metric families. To clarify this, consider any family of
functions of one argument f (x, t), such that f (x,−1) has
a maximum and a minimum and f (x,1) has no extrema.
In the beginning, the derivative of the function has two
roots, and at t = 1 it has no roots. Therefore, no matter
what perturbation we use, there is a parameter value t1
such that the derivative has exactly one root. One can
easily see that this extremum cannot be generic: as the
extrema merge, the Hessian is always positive at one
and negative at the other. This implies that it is zero at
the moment they merge.

By choosing a suitable coordinate system, a generic
singularity with one parameter in one dimension can be
reduced to the form

f (x, t) = x3 + xt

Stable complex singularities arising in parametric fam-
ilies of functions are studied in singularity theory. It
turns out that in two dimensions a single parameter sin-
gularity has a similar form

x3 + xt +ay2 (2)

One can see (Figure 2) that it corresponds to two crit-
ical points (a saddle and a minimum) merging at a point
(annihilation) for t increasing and a saddle-minimum
pair appearing at a point (creation) for t decreasing. For
t = 0 the critical point is always complex.

Discrete case.. Next we consider the discrete analogs
of creation and annihilation events. Because of the pres-
ence of complex saddles, more event types are possible

t  = -1 t  = 1

Annihilation

Creation

Figure 2: Annihilation and creation events.

(Figure 3). In addition, because of the piecewise linear
nature of the functions, the singularities do not move
continuously but in discrete jumps from one vertex to
another. So we introduce one more event type corre-
sponding to singularities changing locations.

We consider piecewise linear functions evolving
piecewise linearly in time. The topological picture for
such function changes discretely. Each change corre-
sponds to a value flip at an edge (v,w), i.e. transition
from configuration f (v) > f (w) to the configuration
f (v)< f (w), with the relative order of all other adjacent
functions remaining unchanged. Again, one can assume
that two elementary value flip events never coincide in
time by simple tie-breaking.

Merge/Annihilation. We use the term merge events to
denote any events which result in a critical point
disappearing. Due to the presence of k-fold sad-
dles, many variations of events are possible, with
only the one involving a simple saddle and a max-
imum or minimum resulting in annihilation. Other
types of events include saddle merges and a max-
imum or minimum absorbed by a saddle with a
change in the number of folds. We consider all
these events admissible.

Creation. Similarly, creation events are the events re-
sulting in creation of a critical point, and can be of
many types. Only one type (emergence of a saddle-
minimum/maximum pair) results in critical points
created from a regular point. We forbid all events
that involve the creation of a maximum or a min-
imum. We allow saddle separation, as we view k-
fold saddles as k-simple saddles merged together.

Exchange. Adjacent k-fold saddles may exchange
folds; no critical points move in this case.

Move. This type of event corresponds to the situation
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when a critical point vanishes at one end of an edge
with a point of the same type appearing at the other.

Non-event. Some value flip events may result in no
changes in the type of endpoints of the edge.

Nothing

Move

Creation

Merge

Figure 3: Discrete topological event types resulting in changes in crit-
ical point locations.

For each of our filter examples all event types are
present for sufficiently complex images, unless topol-
ogy control is applied.

Creation events in smoothing.. Intuitively, one would
think that at least for Laplacian smoothing no creation
events can occur. However, it is known not to be the
case, and indeed creation events can be observed if
Laplacian smoothing is applied to real datasets (Fig-
ure 4). A typical local configuration resulting in such
events is shown in Figure 5.

4. Algorithm

The algorithm operates on scalar values p(v) defined
at vertices v ∈V of a mesh which evolve over time. We
assume that there is a monotonic ordering of values at
any fixed time, breaking ties in a uniform way using ver-
tex indices. We use data defined on regular grids in our
examples, but the algorithm can be used for arbitrary
meshes.

In addition to the input data, the user defines the set
of disallowed topological events.

The filter, which is separate from the topology con-
trol algorithm, for a given time step ∆t and data pl(v)
corresponding to time tl produces proposed values

Figure 4: A magnified fragment of the Puget Sound dataset, for sev-
eral steps of Laplacian smoothing. Note a pair of critical points ap-
pearing, moving apart, and then merging.

Figure 5: A typical creation event for Laplacian smoothing: a thin
ridge connecting two bumps. The new maximum-saddle point is quite
stable and disappears only after the shorter bump is almost entirely
smoothed out.

p̄l+1(v) = F(pl(v),∆t) for the moment t l+1 = t l +∆t.
The algorithm can be applied to any evolving scalar
field. We have considered the following filter exam-
ples: linear diffusion (Laplace filtering), sharpening,
and anisotropic edge-enhancing diffusion [22].

The choice of disallowed topological events depends
on the semantics of the filter. When sharpening one
wishes to exaggerate existing features, so all topolog-
ical events are prevented. For the other two filters, we
with to reduce topological complexity by smoothing, so
creation events are prevented. For diffusion, the updates
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are computed using either explicit or implicit time step-
ping, the latter allowing large time steps ∆t.

A single step of the outer loop of the algorithm re-
quests the proposed values p̄l+1(v) from the filter and
assumes linear evolution between pl(v) and p̄l+1(v) for
each value. The time of all possible topology events is
computed, and the proposed values are adjusted to en-
sure that disallowed events do not occur. After adjust-
ment, events need to be recalculated, and further adjust-
ments may be necessary. The process is iterated until
there are no disallowed events.

The algorithm may fail to produce progress, if for all
points v computed update is below a threshold ε , which
for any point v may be due to two reasons: either the
local time step or p̄l+1(v)− pl(v) is too small, which
means that the filter has converged to a limit value. The
algorithm terminates if it either reached the target time,
or failed to produce progress.

One iteration of the algorithm in detail.. The algorithm
uses two maps:

• Critical point map status(v) indicating if a ver-
tex is a (discrete) maximum, minimum, saddle or
regular point, and storing a critical point’s ID. This
map is initialized using the original data and incre-
mentally updated at every step.

• Value flip map flip(v,w), where (v,w) is an edge,
recording value flips observed at the current step,
and the time for each flip (the timestamp).

Step 1: Obtain proposed values. Compute trial point
positions p̄l+1(v) using the uncontrolled filter.

p̄l+1 = F(∆t, pl(v)).

If no progress is made, i.e. the difference |p̄l+1− pl |
does not exceed a user-defined threshold, the algorithm
terminates.
Step 2: Identify and sort the value flip events. We regard
the evolution of the mesh as linear between pl and p̄l+1.
This guarantees that each edge may flip value no more
than once during a time step. For each edge (v,w) we
determine whether or not it flips value during the trial
step and store the result in flip(v,w).

Then for all value flip events we compute the exact
time of the value flip flip.time(v,w), using linearity
and our tie-breaking scheme, and sort the value flipping
edges according to this time.

Let a,b,c,d be four points, such that the pairs
(p(a), p(b)) and (p(c), p(d)) both change order be-
tween pl and p̄l+1. We assign unique infinitesimal per-
turbation scales e(a),e(b),e(c),e(d) to each vertex, i.e.

we regard the value at a vertex v ∈ {a,b,c,d} as a poly-
nomial p(v)+ εe(v) in ε .

Let t be the the solution of pl(a)(1− t)+ t p̄l+1(a) =
pl(b)(1− t) + t p̄l+1(b), and let t ′ be the solution of
pl(c)(1− t)− t p̄l+1(c) = pl(d)t − (1− t)p̄l+1(d). We
assume that both solutions exist (otherwise there are no
events that need to be ordered). Then

t =
pl(b)− pl(a)+ εe(b)− εe(a)

(p̄l+1(a)− pl(a))− (p̄l+1(b)− pl(b))

and

t ′ =
pl(d)− pl(c)+ εe(d)− εe(c)

(p̄l+1(c)− pl(c))− (p̄l+1(d)− pl(d))
.

To compare t and t ′, we consider f (ε) = t − t ′. If
f (0)> 0 then no tie-breaking is necessary. However, it
is possible that f (0) = 0. This is the case where pertur-
bation is necessary: we break the tie by computing the
first-order term of f (ε), which determines the sign of
f (ε) for all sufficiently small ε > 0.

If f (0) = 0, then f (ε) is given by

f (ε) = ε

(
e(b)− e(a)

(p̄l+1(a)− pl(a))− (p̄l+1(b)− pl(b))

− e(d)− e(c)
(p̄l+1(c)− pl(c))− (p̄l+1(d)− pl(d))

)
.

Step 3: Detect disallowed events. Next, we traverse the
event list ordered by time, detecting creation events. For
each value flip event (v,w), we determine its type based
on the changes of signatures of endpoints v and w in
the critical point map for pl and p̄l+1, as explained in
Section 3.

If we find a disallowed event (v,w) at a time t =
flip.time(v,w)< tl+1, we set

p̄l+1(v)← (t−δ )
(

p̄l+1(v)− pl(v)
)
+ pl(v)

and

p̄l+1(w)← (t−δ )
(

p̄l+1(w)− pl(w)
)
+ pl(w)

and return to Step 2. In so modifying p̄l+1, we set the
proposed values for v and w to δ before the value flip
along the line from pl to p̄l+1.

Thus the value flip no longer occurs as the values of
v and w evolve from pl to p̄l+1. In other words,

sign(pl(v)− pl(w)) = sign(p̄l+1(v)− p̄l+1(w)).

This ensures that undesired topological events never oc-
cur. An example is shown in Figure 6.
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controlled

uncontrolled

Figure 6: Without topology control, a maximum-saddle pair is cre-
ated. With topology control, the creation event is suppressed.

If no creation events are found at the end of the event
list traversal, then the inner loop is terminated, pl+1(v)
is set to p̄l+1(v), and the next increment is obtained from
the filter.

We are guaranteed to exit the inner loop. Every time
we disallow an event, the proposed values p̄l+1 ap-
proach the current values pl . Because this process is
monotonic, eventually p̄l+1 will not contain any disal-
lowed events. This may occur because p̄l+1 no longer
differs from pl ; a small difference |p̄l+1− pl | is a termi-
nation condition for the algorithm.

The pseudocode for the algorithm is as follows.
repeat

for all v ∈V do
p̄l+1(v)← F(∆t, pl(v))

end for
repeat

status
l+1← statusl

flip← all value flipping edges (v,w), sorted
by time

for all f (v,w) ∈ flip do
update statusl+1(v) and status

l+1(w)
if f is a disallowed event then

modify p̄l+1(v), p̄l+1(w)
break

end if
end for

until no undesired event is found
pl+1← p̄l+1

statusl+1← status
l+1

l← l +1
until no progress possible or target time reached
Depending on the type of the filter, the algorithm be-

haves in different ways: if locally the filter smoothes
the values, it still may create features. However, these
features are short-lived, so the values frozen by the al-
gorithm are likely to be released quickly (see the discus-
sion of the Laplacian smoothing example in Section 5).
On the other hand, if the filter is locally enhancing and

tends to create new features, the algorithm will prevent
it from altering the image, which we consider the desir-
able behavior in such cases.

The return to Step 2 after modification of the pro-
posed values is essential, as the value modification re-
sults in rearrangement of critical points. This results in
a considerable increase in time vs. simple application
of a filter for initial steps. However, following a suf-
ficiently large number of smoothing steps, few critical
points interact with each other in a given step, so fewer
inner cycles are necessary for each time advance.

5. Results

We show the results of our algorithm for three differ-
ent filters:

• Discrete Laplacian smoothing (diffusion):

pl+1
L (v) = pl(v)+∆t ∑

edges(v,w)
(pl(w)− pl(v))

• Sharpening, for a fixed n,

pl+1
S (v) = pl(v)+∆t(pn

L(v)− p0(v))

• Discrete anisotropic diffusion [22]:

pl+1
AD (v)= pl(v)+∆t ∑

edges(v,w)

pl(w)− pl(v)
1+‖pl(w)− pl(v)‖2/k2

For diffusion, we have implemented both explicit and
implicit time stepping, the linear systems solved using
SuperLU [26] in the latter case.

Note that for the sharpening filter for any time t is a
linear interpolation between p0(v) and pn

L(v).
We use two artificial datasets for comparison: a ridge,

showing the emergence of a high-persistence saddle for
Laplacian smoothing without topology control, and a
pure noise image, which almost entirely consists of crit-
ical points in the beginning.

We use several real datasets: the Puget Sound terrain
map, a CT scan slice of a cow brain, a retina image, and
a CT scan slice of a human torso. In the images show-
ing critical points, crosses denote saddles, empty circles
denote minima, and circles with dots denote maxima.

Figure 8 (right) compares the behavior of the Lapla-
cian smoothing filter for artificial data with and without
topology control. Note that while the topology change
is prevented, there is little impact on the overall surface
smoothness. Figure 4 shows a similar event in the Puget
sound dataset.
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controlled filteringuncontrolled filtering

Figure 7: Temporary local artifacts in the smoothing process due to
topology control, magnified image.

Figure 9 shows that even for very complex topolo-
gies (in the initial image almost every point is critical)
the algorithm does not get stuck because of excessive
numbers of frozen values.

The analysis of the topology of the scale space pro-
vides intuition into why this is the case: in Damon [23]
it is shown that unlike the general case, there is an asym-
metry between creation and annihilation events in the
evolving data resulting from Laplace smoothing. In this
case, the two types of events can be described by differ-
ent normal forms and further analysis shows that newly
created critical points have long expected lifetime only
on ridges, i.e. on a small subset of the image. Thus, on
average, the lifetime of created topological features is
short, and values need to move only slightly slower to
avoid feature creation entirely.

Next, we compare the results for three filters (Fig-
ure 13). For each filter we show five images: the orig-
inal image, the filtered image without topology control,
the filtered image with topology control, the relative
magnitude of difference in each case, and the map of
all created features without topology control. Note that
most if not all created features are small, and hard to
see in the image, and the filtering results in both cases
are visually similar. We also observe that errors are
small and localized for two filters (the maximal error
is approx. 2% for Laplacian smoothing and 6% for
anisotropic diffusion). While overall the changes in-
troduced by topology control are small, for smoothing
filters one can sometimes observe artifacts near values
which are prevented from changing. In these areas the
surface appears less smooth than in adjacent areas—for
example, in the sharp ravines visible in the terrain in
Figure 13 (left column), shown magnified in Figure 7.
These artifacts exist for a relatively short time and are
eliminated in subsequent filtering steps.

The errors are much higher and spread out for sharp-
ening. This is not surprising as sharpening directly in-
creases function value at locations with high-frequency
detail, and our algorithm prevents the creation of some
of these spurious features.

Figure 11 shows the numbers of critical points as a
function of Laplacian smoothing iteration for several
models. Note that the numbers oscillate for Laplacian
smoothing but monotonically decrease with topology
control. Significant oscillations early in the process of
Laplacian smoothing are also present, although not vis-
ible because of the large total number of critical points.
One can observe that while creation event are clearly a
small fraction of the total number of events they have a
visible impact on the topological evolution.

Figure 10 illustrates the algorithm performance
(256x256 data, Laplacian smoothing, implicit time step-
ping). One can observe that a significant fraction of the
time is spend on the first several steps, due to the need
for a large number of inner loop iterations to resolve
all topological events, mostly due to small scale noise.
Although topology control increased the total time com-
pared to uncontrolled Laplacian smoothing by a factor
of 2.22, the first three steps accounted for 43.95% of
the difference. Each uncontrolled smoothing step took,
on average, 3.10 seconds; the data set required 128 to-
tal smoothing steps. (Results were generated on a 2.4
GHz Xeon.) For later steps, more than one inner loop
iteration is rarely needed. If it is acceptable to pre-
smooth the image without topology control or otherwise
eliminate small-scale features e.g. by setting all val-
ues inside the critical contour bounding the feature to
the contour value, one can drastically reduce the over-
head of iterations in the first few steps. This is true as
well for anisotropic diffusion. Sharpening, on the other
hand, takes more time per step as virtual time increases.
This is because we prevent any topological changes; the
sharper the image becomes, the more undesired critical
point changes sharpening attempts to effect.

Finally, we observe that by disallowing feature cre-
ation events we implicitly obtain a complete or partial
topological hierarchy and a measure of feature persis-
tence which can be used for topology visualization and
simplification (cf. Carr et al. [19]).

Recall that each topological feature is associated with
a pair of critical points (in 2D a saddle and a minimum
or maximum). By observing annihilation events, we
can establish a feature hierarchy, and use the critical
point lifetime as feature persistence. This defines al-
ternative feature persistence measures associated with
different filter types. For example, anisotropic dif-
fusion filters would give high persistence to features

8



Figure 8: Comparison of our topology controlled smoothing algo-
rithm with uncontrolled Laplacian smoothing for a simple artificial
dataset.

Figure 9: Topology controlled Laplacian smoothing for random initial
data.

bounded by well-defined edges. Figure 12 compares
the highest-persistence features given by the simplest
persistence definition (value difference at the two crit-
ical points defining a feature) with the same number of
high-persistence features given by anisotropic diffusion
(specifically, stable features with infinite lifetime).

6. Conclusions and future work

We have presented a simple algorithm that ensures
that filtering results in topology preservation or mono-
tonic topology simplification in the sense of the reduc-
tion of the number of critical points in a scalar field. We
have demonstrated that for three filters and a number
of test images, the constraints imposed by the topology
control algorithm do not significantly affect the filtering
process.

Clearly, our algorithm is a first step in this direction.
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Figure 10: Algorithm performance: CPU time per smoothing step, for
implicit Laplacian smoothing, running on a Xeon 2.4 GHz.
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Figure 11: The number of critical points (y-axis) as functions of
the iteration number (x-axis) for four datasets undergoing Laplacian
smoothing (red line) and topology controlled Laplacian smoothing
(purple dotted line). Upper row: artifical datasets. Lower row: the
cow brain CT scan and Puget Sound dataset.

Figure 12: Several highest-persistence features, cow brain dataset.
Left: persistence measured by difference of values of control points
for a feature. Right: persistence measured by feature lifetime under
anisotropic diffusion (in this case, stable features with infinite lifetime
are shown).
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the small-scale features in the original more visible.
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While we have applied it to data sets defined on regu-
lar 2D meshes, there are no fundamental limitations on
either mesh structure or the dimension of the problem.
We plan to explore the behavior of the algorithm in 3D
where creation events are more common and more types
of topological events may occur. Specifically, critical
points have indices 0 through 3; topological events oc-
cur between minima and index-1 saddles, index-1 and
index-2 saddles, and maxima and index-2 saddles. It is
these events that must be detected when a value flips at
an edge in a 3D mesh. The structure of the algorithm
remains the same. It may, however, be necessary to find
ways of improving the algorithm’s efficiency.

One significant downside of approaches of this type
is that artifacts are hard to predict. While we have ob-
served very few, it would be desirable to have an al-
gorithm which can alter the filter behavior in advance,
spreading the modification necessary to prevent disal-
lowed events to a larger number of points and reducing
the necessary modification for each point.
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cess topology from isosurfaces. ACM Transactions on Graphics
2004;23(2):190–208.

[6] Milnor J. Morse Theory. New Jersey: Princeton Univ. Press;
1963.

[7] Helman JL, Hesselink L. Visualizing vector field topology
in fluid flows. IEEE Comput Graph Appl 1991;11(3):36–46.
doi:http://dx.doi.org/10.1109/38.79452.

[8] de Leeuw W, van Liere R. Collapsing flow topology using area
metrics. In: VIS ’99: Proceedings of the conference on Visu-
alization ’99. Los Alamitos, CA, USA: IEEE Computer Society
Press. ISBN 0-7803-5897; 1999, p. 349–54.

[9] Tricoche X, Scheuermann G, Hagen H. A topology simplifica-
tion method for 2d vector fields. In: IEEE Visualization 2000.
2000, p. 359–66.

[10] Tricoche X. Vector and tensor field topology simplification,
tracking, and visualization. Ph.D. thesis; Universitat Kaiser-
slautern; 2002.

[11] Tricoche X, Scheuermann G, Hagen H. Continuous topology
simplification of planar vector fields. In: IEEE Visualization
2001. 2001, p. 159–66.

[12] Freeman H, Morse SP. On searching a contour map for a given
terrain profile. Journal of the Franklin Institute 1967;248:1–25.

[13] Sircar JK, Cerbrian JA. Application of image processing tech-
niques to the automated labelling of raster figitized contours. In:
Int. Symp. on Spatial Data Handling. 1986, p. 171–84.

[14] van Kreveld MJ, van Oostrum R, Bajaj CL, Pascucci V,
Schikore D. Contour trees and small seed sets for isosurface
traversal. In: Symposium on Computational Geometry. 1997, p.
212–20.

[15] Carr H, Snoeyink J, Axen U. Computing contour trees in all
dimensions. In: Symposium on Discrete Algorithms. 2000, p.
918–26.

[16] Bajaj C, Schikore D. Topology preserving data simplifica-
tion with error bounds. Journal on Computers and Graphics
1998;vol. 22(1):3–12.

[17] Edelsbrunner H, Harer J, Zomorodian A. Hierarchical Morse
complexes for piecewise linear 2-manifolds. In: Proc. 17th Ann.
ACM Sympos. Comput. Geom. 2001, p. 70–9.

[18] Edelsbrunner H, Harer J, Natarajan V, Pascucci V. Morse-
Smale complexes for piecewise linear 3-manifolds. In: Proc.
19th Ann. Sympos. Comput. Geom. 2003, p. 361–70.

[19] Carr H, Snoeyink J, van de Panne M. Simplifying flexible iso-
surfaces using local geometric measures. In: IEEE Visualization
2004. 2004, p. 497–504.

[20] Sohn B, Bajaj C. Time-varying contour topology. IEEE
Transactions on Visualization and Computer Graphics
2005;12(1):14–25.

[21] Witkin AP. Scale-space filtering. In: International Joint Confer-
ence on Artificial Intelligence. Palo Alto; 1983, p. 1019–22.

[22] Perona P, Malik J. Scale-space and edge detection using
anisotropic diffusion. IEEE Trans PAMI 1990;12(7):629–39.

[23] Damon J. Local Morse theory for solutions to the heat
equation and Gaussian blurring. J Differential Equations
1995;115(2):368–401.

[24] Florack L, Kuijper A. The topological structure of scale-
space images. J Math Imaging Vis 2000;12(1):65–79.
doi:http://dx.doi.org/10.1023/A:1008304909717.
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